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Abstract 

Electronic Imaging is a major source of input data in today’s 
wealth of computational models. Using models of Color, as an 
example, we can see that photographs as input data can be 
problematic. Valid input data requires caution about the actual 
quantitative information recorded in digital images. Attention to 
quantitative numbers, such as their calibration and linearity is 
needed when we use camera data as the input information for 
computations. As well, does a single pixel’s data provide all the 
information needed to predict Color? Sometimes in Color 
Appearance models we use single spots of light in a no-light 
background, while at other times we use HDR Natural scenes. Is it 
appropriate to assume that a model, established using a single spot 
of light for the stimulus, is transferable to the Natural Scene’s 
Appearances? The problems of hidden assumptions in Electronic 
Imaging Models is discussed using Color as an example. 

 

Introduction 
In many scientific journals, it has become common practice to 
disclose any possible commercial conflicts of interest. This 
practice helps to address issues of possible, and actual problems of 
funding sources influencing scientifiv results. While this is almost 
never an issue in Electronic Imaging, there is another kind of full 
disclosure that could help our field. We should consider a Full 
Disclosure of a Computational Model’s Hidden Assumptions 
(FDCMHA).  

Alessandro Rizzi and Stephen Westland organized a Special 
Issue in Coloration Technology, “Challenges and Open Problems 
in Colorimetry”. Their call-for-papers aimed at “attracting 
provocative commentaries on colorimetry, addressing old and new 
challenges”. This EI talk extends my Coloration Technology 
contribution called “What scene information is needed for Models 
of Color Appearance in the Natural World?” [1] 

Over my career I have witnessed a revolution in models of 
imaging. When I began, all imaging models predicted the light- 
matter interactions of a small spot of light.  Silver halide (AgX) 
Photography and Animal Vision were modeled by the physical 
chemistry at an atomic and molecular scale. AgX cameras were the 
cell phones of today. Everyone knew the basics of how a camera 
worked, and even a college level course taught by a Nobel 
Laureate described human vision’s mechanisms by comparing 
them to an AgX film camera.  

In the 1960’s very successful imaging film models predicted 
the response of sensors to the light falling on them. The input to 
spot of light color models was a constant, uniform spot of light 

calibrated in watts per meter2 at every wavelength. Each unique 
film response was generated by a unique quanta catch of input 
light.  

Today’s AI models uses trillions of images, made of millions 
of pixels from tens of thousands of data bases. We live in a 
tsunami of digital images: photos, frames in videos, slides, 
Facebook, Instagram, and thousands of  other databases. Electronic 
Imaging research and development is the framework that has 
guided this 60 year transformation from AgX’s molecular scale 
spots to digital imaging’s arrays of millions of pixels. These digital 
arrays have opened the door to AI object recognition and 
autonomous vehicles. 

Today’s imaging models have replaced the small spot of light 
with arrays of millions of pixels reporting uncalibrated digital 
values. These digital values are entirely different from light’s 
Watts/meter2. These digits are records of the interactions of light 
falling on a camera’s lens, unwanted camera glare, sensor 
response, proprietary camera firmware and software (dead pixel, 
black level, demosaic, tone-scale and chroma enhancements, data 
compression, fusions of multiple exposures, etc.). Unlike the 
calibrated spot of light inputs, there are no physics-based units of 
measure [2] in digital camera values. Glare is unique in each scene, 
image processing is variable with camera settings, and camera 
responses vary with the manufacturer, and the model. Digital 
images look good; however they are substantial transformations of 
the light coming from the scene. Camera digits do not have a 
physics-based unit, and are an undefined nonlinear quantity. 
Performing calculations using these digits requires assumptions. 
For example, an average of digit values assumes linear data. The 
average of pixel values need not be equal to the average of scene 
radiances, because cameras have nonlinear responses to light.  

Without calibration measurements the quantity described by a 
pixel value is undefined. There is an often cited assumption that 
digital camera sensors have a linear response function because the 
sensor literally counts photons. This assumption is accurate. Sensor 
response is linear. Using sensor linearity as an argument about 
camera response, requires a hidden assumption; namely, that the 
light falling on the lens is linearly proportional to the light falling 
on the sensor. That assumption is a serious unforced error. The 
camera’s optical glare is a substantial spatial transformation of 
scene radiances.[3] After that, the camera’s image processing 
introduces an additional sequence of nonlinear transformations of 
light from the scene. Camera response is a cascade of highly 
nonlinear functions of camera sensor responses.[4] Both glare and 
the camera’s digital processing spatially transform scene radiances. 



 

 

  
Figure 1 (left) Wright’s Colorimetry uses the quanta catch of receptors to predict Color Matches. (right) Models of Neural Spatial 

Comparison are needed to predict Color Appearances in the Natural Scene. 
 

 
 
Colorimetry’s Spot of Light vs. the Natural 
Scene’s Array 

The consequences of the selection of input data for 
computational models are obvious in Color.  Color is the response 
to light from a scene. The description of the scene is the model’s 
input. Hidden assumptions play a fundamental role in Color 
models. In fact, they lead to different theories because they have 
distinctly different inputs. Colorimetry’s input is the spectral 
radiance of a spot of light. As David Wright pointed out 
“colorimetry ends once the light has been absorbed by the colour 
receptors in the retina and that appearance science begins as the 
signals from the receptors start their journey to the visual cortex.” 
[5]   

David Wright splits CIE Color Standards into its two topics: 
Colorimetry, and Appearance. Colorimetry is the study of the 
Molecular Physical Chemistry of light /matter interactions at an 
atomic level. The spectral sensitivities of the receptors are the 
input to vision (Figure 1, left). After that, Appearance is the study 
of the cascade of neural interactions that begin with the signals at 
the opposite end of the rod and cone receptors (neural junctions), 
and travels down the optic nerve and throughout the brain (Figure 
2, right). Wright’s clear dichotomy between Colorimetry 
(light/matter interactions) and Appearance (comparison of neuron 
responses) forms the framework of  distinct Color Vision Models. 

Two Scenes leads to Two Color Models 
All human light/matter interactions take place in the retinal 

rod and cone outer segments (and ganglion cells). The red ellipse 
at the top of the left side identifies the only site of light/matter cone 
interactions. The only scene radiance data allowed in all CIE 
calculations are the X,Y, Z values of a single small spot of light on 
these receptors. Colorimetry predicts MATCHES from the spectral 
radiances of single spots of light. 

Spots of light on a no-light background are unique stimuli. 
There is no glare from surrounding scene segments. The only glare 
comes from the spot itself.  

David Wright stated that: “colorimetry ends once the light has 
been absorbed by the colour receptors in the retina”. That red 
ellipse on the left illustration is Wright’s Colorimetry stop sign.  

Figure 1 (right) illustration begins at all receptors’ neural 
junctions.  The neural input is the complete array of all receptors’ 
responses to quanta catch. Neural spatial processing uses all 
outputs from receptors in the retina. Unlike Colorimetry, real 
Natural Scenes have abundant optical veiling glare in both vision 
and cameras.[6]  Glare transforms the HDR scene radiances into a 
substantially different image on the retina.[7]  While scene 
radiance is the appropriate input to Colorimetry’s model of 
Matches, we cannot use scene radiances as the input to neural 
spatial processing. A spot of light from a Natural Scene does not 



 

 

include the substantial light scattered from all the other segments 
of the scene. 

The right side of the above figure uses a different Scene icon 
for Color Appearance, namely, John Constable’s HDR painting 
Salisbury Cathedral from the Bishop's Garden, (1825). It illustrates 
the Bishop, his cathedral in sunlight, and his garden in shade. It is a 
rendition of what Constable  saw - his Appearances - made from 
this typical real-world HDR scene.  

Figure 1 (right), the white half of the figure, illustrates models 
of appearance, as described by Wright as the neural “journey to the 
visual cortex” and beyond. Color Appearance models use 
receptor’s response as input to the retina’s complex spatial 
comparisons. Dowling’s retinal connections are magnified at the 
top and shown again below in the map of the entire visual 
pathway. (From retina to optic nerve, to primary visual cortex and 
beyond (V4,V5 etc.). The bottom of the right illustration shows the 
many different types of neural spatial comparisons, and their 
location along the visual pathway. It illustrates the work of 
Dowling, Kuffler, Barlow, Daw, Hubel, Wiesel, and Zeki. 
Neurophysiologists have shown that vision uses neural spatial 
comparisons at every stage along the visual pathway. They have 
shown that the visual pathway is a cascade of spatial comparisons 
starting with receptor’s output synapses and continuing at every 
stage throughout the brain. [8] 

Understanding the neurophysiology of vision, so as to know 
the mechanisms of neural spatial comparisons, is an essential 
question in color appearance. These models require input data from 
all parts of the scene. 

Two Models of Color Vision 
Colorimetry measures the light reaching the front surface of 

the eye. It then calculates the quanta catch of receptors to predict 
color matches. The hidden assumptions in different models of 
color vision lead to different consequences. Colorimetry limits the 
scene input data to a single spot of light. The consequence is that it 
can predict if two different spectra will match, with great accuracy. 
The additional consequence is that it cannot predict the color 
appearance of either spectrum.[9, 10]   

CIE Appearance models (CIELAB, CIELUV, CIECAM) limit 
scene input to the XYZ values from a single scene segment. This 
XYZ triplet is the only input data from the scene. The CIE 
Appearance models require assumptions about illumination and 
parameter information that is not specifically calculated from the 
scene, or from the digital image. The model’s programmer assigns 
this information. CIE Appearance models make the hidden 
assumption that the quanta catches of all other receptors in the 
observers field of view are not relevant to Color Appearance.   
 However, “Visual Illusions” contradict this assumption. Since 
daVinci, there are thousands of examples of two identical scene 
segments that have dramatically different appearances 
(Simultaneous Contrast, paintings by Albers [11], Land’s Color 
Mondrians [9]). In the Natural Scene a particular quanta catch can 
have any color appearance.[9] Spatial comparison models require 
measurements of the entire scene as input. It compares all 
receptors’ quanta catches along the entire visual pathway. The 
consequence is that it can calculate Appearances in Natural Scenes. 
 
  

FDCMHA! 
It is essential that we look for, and articulate, our assumptions 

when we design a model, particularly a Color model. We need to 
be highly aware of both calibration and hidden assumptions. 

It is so easy when we pick up and use digital data from 
cameras, or from databases on the web. We can address almost any 
problem. We can do it so fast that we do not have to stop and think 
about things like calibration, radiometric units, linearities, etc. 
When we copy and use data-base digits how do we describe that 
quantity? When we cite that database we document the source, but 
who owns the responsibility that this data is actually the most 
appropriate input for our model? When we try a new idea we can 
see its effect instantly. If we see what we wanted to see on the 
display, we feel reassured that it is accurate, because it worked the 
way we wanted. We do it so fast that there was no time to examine, 
and articulate, our hidden assumptions. The unanticipated 
consequences do not occur to us. That is why digital imaging needs 
FDCMHA! Namely, Full Disclosure of the Computational Model’s 
Hidden Assumptions. In particular we need to give considerable 
thought to our input data. We need to think about its calibration, 
standard units of measure, linearity, and whether it has excluded 
essential input information relevant to the definition and purpose 
of the model.  

Human Color vision’s response to the Natural Scene has two 
powerful spatial transformation mechanisms. The first is glare; the 
second is neural comparisons. Glare causes a major reduction in 
image contrast in the image on the retina. Neural comparisons 
introduce variable contrast mechanisms that counteract glare. 
Maximum glare scenes have the highest slope visual response 
function. Minimum glare scenes have the lowest slope visual 
response function. Neural processing tends to compensate for 
glare.[7]  Models of Color in the Natural Scene require the data 
from all scene elements to predict the effects of glare, receptor 
quanta catch and neural spatial processing. 

Colorimetry’s success depends on the minimal glare in its 
restricted scene. With minimal glare, and its single 
spot/background edge, it isolates quanta-catch information in its 
matching measurements. But it cannot not embrace glare’s 
transformation of the scenes radiance falling on receptors, and the 
neural spatial processing to counteract glare without input data 
from the entire field of view.  

Summary 
Recall that camera digits do not record scene radiances. 

Recall that Colorimetry calculates Matches, while spatial Natural 
Scene models calculate Appearances. Restricting input data to a 
single triplet of X,Y,Z values prevents CIE Appearance models  
from calculating sensations in the Natural Scene.[1] Consider the 
hidden assumptions in computational models, and their input data. 
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