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Frontiers Topic: Scene-Dependent Image Quality and Visual Assessment
Image Quality studies the performance, and limits of scene information captured by vision and cameras. Every image pixel is the
sum [light from scene + glare]. Glare (on each pixel) is the Scene-Dependent re-distributions of light from millions of other pixels.
Glare’s unique spatial patterns responds to global- and local-scene content. Glare is characterized by its Glare Spread
Function(GSF). This study provides a new Python program that convolves CIE GSF with scene luminances to calculate glare-modified-
retinal images. We study Lightness Illusions (range=200:1), and find that uniform scene segments become nonuniform retinal
gradients; that are invisible. Vision’s neural-spatial processing adds the second-spatial transformation that tends to cancel effects
of glare. Neural processing is more powerful than previously appreciated. Glare in Lightness Illusions shows new features of
vision’s neural-spatial-processing. This article studies the first step in all imaging: Scene-Dependent Glare. Despite near invisibility,
glare modifies all quantitative measurements of all images. This article reveals glare’s role in modifying scenes-input data used in
quantitative analyses of vision, models of vision, and visual-image-quality metrics.
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  Abstract

Word count: 348

 

Lightness Illusions (Contrast, Assimilation, and Natural Scenes with Edges and Gradients) show that appearances do not correlate
with the light sent from the scene to the eye. Lightness Illusions begin with a control experiment that includes two identical Gray
Regions-Of-Interest(GrayROI) that have equal appearances in uniform surrounds. The Illusion experiment modifies “the-rest-of-the-
scene” to make these GrayROIs appear different from each other. Our visual system performs complex-spatial transformations of
scene-luminance patterns using two independent spatial mechanisms: optical and neural. First, optical veiling glare transforms
scene luminances into a different light pattern on receptors, called retinal contrasts. This article provides a new Python program
that calculates retinal contrast. Equal scene luminances become unequal retinal contrasts. Uniform scene segments become
nonuniform retinal gradients; darker regions acquire substantial scattered light; and the retinal range-of-light changes. The glare
on each receptor is the sum of the individual contributions from every other scene segment. Glare responds to the content of the
entire scene. Glare is a scene-dependent optical transformation. Lightness Illusions are intended to demonstrate how our “brain
sees” using simple-uniform patterns. However, the after-glare pattern of light on receptors is a morass of high- and low-slope
gradients. Quantitative measurements, and pseudocolor renderings are needed to appreciate the magnitude, and spatial patterns
of glare. Glare’s gradients are invisible when you inspect them. Illusions are generated by neural responses from “the-rest-of-the-
scene”. The neural network input is the simultaneous array of all receptors’ responses. Neural processing performs vision’s second
scene-dependent spatial transformation. Neural processing generates appearances in Illusions and Natural Scenes. “Glare’s
Paradox” is that glare adds more re-distributed light to GrayROIs that appear darker, and less light to those that appear lighter.
This article describes 9 experiments in which neural-spatial-image processing overcompensates the effects of glare. This article
studies the first-step in imaging: scene-dependent glare. Despite near invisibility, glare modifies all quantitative measurements of
images. This article reveals glare’s modification of input data used in quantitative image analysis and models of vision, as well as
visual image-quality metrics. Glare redefines the challenges in modeling Lightness Illusions. Neural spatial processing is more
powerful than we realized.

   

  Contribution to the field

Glare, defined by the CIE Glare Spread Function (GSF), convolved with the array of scene luminances, calculates light patterns on
retinal receptors. Previous studies of glare using HDR scenes showed extraordinary reductions of the range of light on the retina.
This article shows glare’s major role in normal range scenes. It studies Lightness Illusions: Contrast, Assimilation, Land’s B&W
Mondrian and Adelson’s Checkershadow. All these Illusions have pairs of “Regions-Of- Interest” (ROI) with identical scene luminances.
The rest of the Lightness Illusion’s scene content make identical ROIs have different appearances. This article shows optical glare
transforms equal scene luminance into unequal retinal receptor responses, adding new complexity to neural spatial processing.
Neural spatial transformations are more complex than we thought. Retinal receptor responses are the input to neural spatial
processing. This article provides new, more accessible Python platform code for calculating the light on the retina.
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Abstract 15 

Lightness Illusions (Contrast, Assimilation, and Natural Scenes with Edges and Gradients) 16 
show that appearances do not correlate with the light sent from the scene to the eye. 17 
Lightness Illusions begin with a control experiment that includes two identical Gray 18 
Regions-Of-Interest(GrayROI) that have equal appearances in uniform surrounds. The 19 
Illusion experiment modifies“ the-rest-of-the-scene” to make these GrayROIs appear 20 
different from each other. Our visual system performs complex-spatial transformations of 21 
scene-luminance patterns using two independent spatial mechanisms: optical and neural. 22 
First, optical veiling glare transforms scene luminances into a different light pattern on 23 
receptors, called retinal contrasts. This article provides a new Python program that 24 
calculates retinal contrast. Equal scene luminances become unequal retinal contrasts. 25 
Uniform scene segments become nonuniform retinal gradients; darker regions acquire 26 
substantial scattered light; and the retinal range-of-light changes. The glare on each 27 
receptor is the sum of the individual contributions from every other scene segment. Glare 28 
responds to the content of the entire scene. Glare is a scene-dependent optical 29 
transformation. Lightness Illusions are intended to demonstrate how our “brain sees” using 30 
simple-uniform patterns. However, the after-glare pattern of light on receptors is a morass 31 
of high- and low-slope gradients. Quantitative measurements, and pseudocolor renderings 32 
are needed to appreciate the magnitude, and spatial patterns of glare. Glare’s gradients are 33 
invisible when you inspect them. Illusions are generated by neural responses from “the-34 
rest-of-the-scene”. The neural network input is the simultaneous array of all receptors 35 
responses. Neural processing performs vision’s second scene-dependent spatial 36 
transformation. Neural processing generates appearances in Illusions and Natural Scenes. 37 
“Glare’s Paradox” is that glare adds more re-distributed light to GrayROIs that appear 38 
darker, and less light to those that appear lighter. This article describes 9 experiments in 39 
which neural-spatial-image processing overcompensates the effects of glare. This article 40 
studies the first-step in imaging: scene-dependent glare. Despite near invisibility, glare 41 
modifies all quantitative measurements of images. This article reveals glare’s modification 42 
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of input data used in quantitative image analysis and models of vision, as well as visual 43 
image-quality metrics. Glare redefines the challenges in modeling Lightness Illusions. 44 
Neural spatial processing is more powerful than we realized. 45 

1. Introduction 46 

Vision, and Images made for humans, have three major stepping stones: light from the 47 
scene, receptors response to light, and appearances. This article studies Lightness Illusions, 48 
glare, and the visual pathway that leads to appearances. Optical Veiling Glare is the first 49 
step in all of imaging with lenses. It is the first spatial transformation of scene luminance 50 
information. Glare modifies the pattern of light falling on retinal and cameras’ receptors. 51 
Glare redistributes light from high-luminance scene segments into low-luminance regions. 52 
The amount of glare from a single scene element, or single pixel is tiny. However, glare is 53 
the sum of all the millions of tiny contributions from all other scene pixels. Glare makes a 54 
unique (scene-dependent) light contribution to all scene pixels.(McCann Rizzi, 2011; 55 
McCann, Vonikakis, Rizzi, 2018). 56 

In a 1,000,000 pixel image, the glare added to each individual pixel is the sum of glare 57 
contributions from 999,999 other pixels. That process is repeated a million times to 58 
calculate the retinal image. In computationally efficient FFT convolutions there are the 59 
equivalent of 1012 glare contributions. Glare requires a scene-dependent model. All input 60 
scene pixels are necessary to calculate each scene-dependent pixel’s output. 61 

The science of Imaging uses two different quantitative metrics. First, optics uses the 62 
International System of Units (SI), made up of 7 base units (second, meter, kilogram, 63 
ampere, etc). For visible light SI-7 includes the candela (cd), and derived-unit luminance 64 
[candela/per square meter] (NIST,2022). This standard is traceable to human detection 65 
thresholds of light, and is based on wavelength and the energy of photons. It quantifies the 66 
energy required for specific human Light/Matter minimum detection thresholds at atomic 67 
and molecular levels. Here, experimenters ask the observers, did you detect light. Their 68 
answer reports the amount of light at threshold, and its calibration reports quanta catch 69 
(Hecht, Shlaer and Pirenne, 1942). This is vision’s scene-independent measurement. 70 

Some theories, and practical technologies use scene-independent models. They use only a 71 
single scene pixel’s quanta catch to calculate each pixel’s final signal. Scene-independent 72 
models assume that the quanta catch of each individual pixel is all the information from 73 
the scene that is necessary to model the response function to light in all pixels, and in all 74 
images. For example, silver-halide film responses are accurately modeled by the quanta 75 
catch of microscopic regions of film. The film has a fixed-response function to light. Every 76 
scene segment with constant light stimulus generates identical film optical densities 77 
independent of the “rest of the scene”. (The film is scene-independent, however camera 78 
bodies and lenses introduce glare (Jones and Condit, 1941), making cameras scene-79 
dependent.)  Other examples of scene-independent models are: CIE-Colorimetry, CIE 80 
Color Appearance Models (CIECAM), most digital cameras and displays. These 81 
calculations allow only single pixel scene radiance inputs from the scene to predict single-82 
pixel quanta response. Scenes with millions of pixels requires millions of independent 83 
calculations. Digital scene-independent calculations, use hardware, firmware, and Look-84 
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Up-Tables (LUTs) in pipelines for efficiency, but they are unresponsive to optical glare, 85 
and all of human vision’s scene-dependent mechanisms. 86 

Practical Imaging technology and Image Quality use appearance metrics to evaluate 87 
human response to prints and displays. It measures response at the opposite end of the 88 
human visual pathway from quanta catch.  Instead of quantifying local molecular events, it 89 
measures vision’s spatial-image processing of all 100 million receptor outputs. Here, 90 
experimenters ask observers which color or lightness sample in a standard collection does 91 
the ROI match. Their answer reports appearances that are scene-dependent.  92 

Psychophysics has innumerable examples of [appearance ≠ quanta catch]. Color 93 
Constancy(McCann, 2021d) and Lightness Illusions demonstrate that successful models of 94 
vision requires input data from “the-rest-of-the-scene”. Since the 1950’s neuroanatomy, 95 
neurophysiology, and psychophysics have documented that the human visual pathway is a 96 
cascade of spatial comparisons. Retinal receptors, amacrine, horizontal, ganglion, ipRGC, 97 
lateral geniculate, striate cortex, blobs, and v4 cells perform different types of spatial 98 
comparisons at different spatial resolutions and orientations(Hubel and Wiesel, (1965). 99 
Oyster,1999). 100 

Retinal receptors outputs are not relayed as independent pixel responses to the brain. They 101 
become time-modulated, spatial comparisons that apply different image-processing 102 
mechanisms at every stage. The input data for vision requires all receptor responses 103 
simultaneously to perform all of its analysis. Vision models requires efficient spatial image 104 
processing of all pixels to calculate appearances. The interactions of all spatial scene 105 
elements generates appearance (McCann and Rizzi, 2011:pp. 173-375).  106 

This article studies how glare affects normal-dynamic-range Lightness Illusions for two 107 
reasons. First, Lightness Illusions demonstrate that vision is the result of scene-dependent 108 
spatial processing. Second, these Illusions work well in the limited range of light found on 109 
normal low-dynamic-range displays. Lightness Illusions contain two identical scene-110 
luminance segments that are identified as the !regions-of-interest” (ROI). Those segments 111 
appear identical if the !rest-of-the-scene” is restricted to a single uniform luminance. 112 
However, the designers of Illusions introduce clever !rest-of-the-scenes” that makes two 113 
identical ROI luminances have different appearances in the same scene. Since glare 114 
redistributes light from all of the scene"s pixels, the question becomes how does the 115 
Illusion"s !rest-of-the-scene” alter those equal scene-luminance segments. Glare has its 116 
strongest effects on the darkest scene segments, moderate effects on mid-range segments; 117 
and minimal effect on the brightest regions. However, glare"s most influential effects are 118 
found at edges between different scene segments, and changes in uniformity.   119 

High-Dynamic-Range (HDR) studies (McCann and Rizzi, 2011) have renewed interest in 120 
glare"s effect on appearance pioneered by Hering (in Hurvich and Jameson, 1966), and Fry 121 
and Alpern (1953,1954). Vos, et al.(1976) measured the eye"s Glare Spread 122 
Function(GSF), and Vos & van den Berg"s (1999) standardized the newer CIE GSF; 123 
expanded by Franssen, et al. (2007). McCann and Vonikakis(2018), expanded 124 
Rizzi/Farup"s MATLAB® program for converting all scene luminances to retinal light 125 
levels. The present submission introduces Python (open-source code) that performs the 126 
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same calculations. Both programs analyze the actual spatial distribution of light on 127 
receptors.   128 

The Gregory and Gombrich(1980) review of illusions includes all types of identical stimuli 129 
that are modified by the rest of the scene  (lines, constant-size objects, and constant light 130 
stimuli). All illusions appear markedly different because of the influence of the !rest-of-131 
the-scene”. Observing ROI"s different appearances, in Lightness Illusions and their 132 
controls, side-by-side, is compelling evidence of vision"s scene-dependent spatial 133 
processing. There are three Lightness Illusion types: Simultaneous Contrast, Assimilation, 134 
and Edge/Gradient scenes [Edwin Land"s Black&White Mondrian(1971), and Ted 135 
Adelson"s Checkershadow (1995)]. All have equal-luminance pairs of scene 136 
segments(ROI) that appear different because of the influence of !the-rest-of-the-scene”. 137 
Many visual properties could contribute to Lightness appearances: adaptation, lateral-138 
neural interactions, multi-resolution processing, edges & gradients, perceptual frameworks. 139 
This article adds scene-dependent optical veiling glare to this list of appearance 140 
mechanisms affecting Lightness Illusions.    141 

In order to study human vision, we need to understand the sequence of events along the 142 
visual pathway. Each stage has a unique input/output response function to light:   143 

# Stage 1. Light from scenes (scene luminance: measured with photometer) 144 

# Stage 2. Light on the retina (retinal contrast: after optical veiling glare) 145 

# Stage 3. Light/Matter interactions (linear sums of rod and cone quanta catch)  146 

# Stage 4. Receptor output $ Neural input (log quanta catch)  147 

# Stage 5. Image processing in the visual pathway (Neural-Spatial comparisons)  148 

# Stage 6. Appearance (Psychophysical Appearance & Perception data)  149 

There is universal agreement about the facts listed in the first four stages: (1) Scenes are described as 150 
arrays of all calibrated scene luminances (cd/m2), each at a calibrated visual angle; (2) The pattern of 151 
light on the retina equals scene convolved with the standard CIE Glare Spread Function (GSF); (3) 152 
Light/Matter biochemical reactions, initiated by photons, takes place at a molecular level within 153 
cubic microns (linear sum of rod and cone quanta catch); (4) Receptor’s chemical output (at 154 
receptor’s neural junctions at the other end of the cell) generates a response function equal to log 155 
quanta catch response across its synapse in the horizontal cells.(Oyster, 1999; Hartline and Graham, 156 
1932; Werblin and Dowling, 1969).  157 
 158 
In summary, the sequence of different human Response Functions to light is: 159 

1. Scene luminance = cd/m2 160 

2. Glare redistributes light 161 

3. Visual pigments count photon = linear quanta catch 162 
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4. Receptor output ~ log quanta catch 163 

The physiology of receptors presents a compelling case that receptor response is proportional to log 164 
quanta catch for a spot of light on a receptors. 165 
Psychophysical research on Uniform Color Spaces shows a different total Response Function to 166 
Light in Stage 6. Munsell asked observers to make judgements of uniform distances in Lightness, 167 
Hue and Chroma. This data established a Colorimetric Uniform Space describing appearances in 168 
complex scenes(Newhall, Nickerson, and Judd, 1943).  Munsell’s Lightness is proportional the the 169 
cube-root of luminance. Many experiments have verified Munsell’s results. CIE(L*) has a cube-root 170 
response function to scene luminances (Wyszecki and Stiles, 1982; McCann Rizzi, 2008). 171 
 172 
The analysis of Scene Content, scene-independent, and scene-dependent experiments are key to 173 
understanding the apparent conflict between physiology and psychophysics. Physiology experiments 174 
measure receptor cells in a dark room with a small spot of light on them. These are scene-175 
independent experiments. Psychophysical Uniform Lightness Scale experiments are performed in a 176 
light environment as a part of a complex scene. These are scene-dependent experiments. The 177 
physiological experiment had minimal glare, while the psychophysical experiments had considerable 178 
glare. 179 
 180 
Stiehl et al. (1983) made an HDR Lightness Scene composed of neutral density filters whose 181 
appearances are equally-spaced Lightness patches in a uniform surround. They measured the 182 
luminances of each of the equally-spaced Lightness steps. They plotted those luminances vs 183 
Lightness step and found the cube-root function often reported in the literature. This complex scene 184 
contained 9 Lightness segments that observers selected to be equal steps in Lightness. The high- 185 
luminance surround around each segment added glare to each of them. The cube-root plot of the 186 
scene before glate means, when starting from Max luminance, the difference in log luminance 187 
between each Lightness step increases with every darker step. That is, the scene’s log-luminance 188 
difference between max and the next darker Lightness is the smallest value; and the scene’s log-189 
luminance difference gets larger with every darker Lightness step. 190 
 191 
Stiehl calculated the retinal contrast of these equally-spaced Lightnesses using the Vos et al. (1976) 192 
GSF. This data showed that glare added variable amounts of stray light to each of the equally spaced 193 
Lightness segments. The plot retinal contrast vs. log luminance was fit by a straight line. That means 194 
that all of the sequence of equally spaced Lightness segments had a constant difference in log 195 
luminance on the retina. The calculated glare added the amount of stray light needed to make all 196 
decrements equal. 197 
 198 
Another way to look at this result is that the observers had to decrease the luminance of darker 199 
patches to make the Lightness steps equal. The darker the step, the greater the decrease needed.   200 
 201 
Uniform Color Space target scenes have considerable glare. Observers reported that equally-spaced 202 
Lightnesses have equal decrements in log luminance. The sum of [scene luminance+glare] equals 203 
constant log-luminance decrements. The assumption of zero glare generates the cube-root Lightness 204 
function in CIE(L*). Calculating the light on the retina generates the straight line log- luminance 205 
function. Physiological receptor response is a log-luminance function. Lightness is promotional to 206 
receptor response in these high-glare scenes. 207 

Our visual system performs complicated spatial transformations of light patterns from 208 
scenes. Measurements of appearances in HDR scenes (Rizzi and McCann, 2009; McCann 209 
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and Rizzi, 2007; 2009; 2011; McCann and Vonikakis, 2018) showed large reductions of 210 
retinal-dynamic range in maximal-glare scenes. Two transparent films were superimposed 211 
to make 40 patches (white-to-black) with scene luminance range of 5.4 log units. All 212 
patches were surrounded by a max-luminance surround. After intraocular glare the retinal 213 
contrast range was 1.5 log units.  In a nearly million:1 range scene, glare reduced the range 214 
of light on the retina to 33:1. The scene’s appearance varied from bright white to very-dark 215 
black. 216 

A second experiment changed the background around each of the 40 patches from max-217 
luminance to min-luminance. In this nearly million:1 range scene, glare reduced the range 218 
of light on the retina to 5,000:1. The second scene’s appearance varied from bright white to 219 
very-dark black. Observers reported that whites appeared the same white in both 220 
experiments. Remarkably, blacks appeared the same black in both experiments despite the 221 
change in range from 33:1 to 5,000:1. Appearances over the range of white to black have 222 
variable scene-dependent response functions to light on receptors. (McCann,Vonikakis, 223 
2018). In all cases, these response functions are all straight-line log luminance plots, with 224 
has variable, scene-dependent slopes (Stiehl, Savoy and McCann, 1983; McCann, 225 
Vonikakis, 2018).  226 

This previous HDR glare study described an open-source computer program code using 227 
MATLAB programming language. The present study describes a new more accessible 228 
version using Python (open-source) programming language. Both programs describe 229 
techniques to compare the calibrated image of scene luminances with the calculated retinal 230 
contrast image. A computational model of appearances must first calculate the light 231 
imaged on the retina. This article describes computer calculations, based on the CIE 232 
Standard for Intraocular Glare (Vos and van den Berg, 1999), which makes specific 233 
adjustments for observer"s, age and color of iris. Our new software is implemented in 234 
Python. Both code and programming language are freely available to all researchers. (The 235 
code is in Data Sheet 1.docx in Supplementary Material.) 236 

Luminance, unambiguously defined in physics, is the measured input array used by the 237 
Glare Spread Function (GSF) convolution in the Python program. This article defines 238 
retinal contrast as the name of the program"s first calculated output image. The GSF 239 
convolution conserves the total energy in the input scene_luminance array. It redistributes 240 
all of the input energy into the output image. As described by Hecht et al.(1942) the light 241 
falling on receptors is attenuated by front surface reflection, intraocular and macular 242 
pigment absorptions. The eyes%"pupil size, and pre-retinal light absorptions are not 243 
accounted for in our program. This article uses retinal contrast as the specific term for the 244 
amount of light imaged on the retina. It is the normalized, linear photopic energy per pixel 245 
in a flat array congruent with the flat visual test targets. We do not use the term retinal 246 
luminance because our calculation does not measure intraocular light attenuation. Retinal 247 
contrast is the convolution’s output (normalized pattern of light on receptors).   248 
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Figure 1 illustrates the 8 different images used in the Lightness Illusion’s 250 
construction, calibration of scene luminance input, and retinal contrast calculation of 251 
the light falling on receptors, followed by the analysis of the effects of glare. The 252 
image(1) is the Photoshop® digital file (the array of 8-bit values) of a Contrast 253 
Illusion. Contrast has two Gray Regions-of-Interest (ROI), surrounded by max digit 254 
on the left, and min digit on the right.  The image(2) is that 8-bit array displayed on 255 
the Apple XDR powerbook screen. Using a Konica Minolta C100A telephotometer, 256 
the experimenters measured the scene luminances of light emitted by the screen at 257 
all digital inputs. Using this calibration, max-White was set to digit 255; the min-258 
Black to digit 21, so that the range of measured luminances of the display was 259 
200:1 [log_range=2.3]. The experimenters adjusted the digital values of the 260 
GrayROIs to be equal, and to optimize the Contrast Illusion’s effects on Grays’ 261 
appearances. The image(3) made by the Python program, is a digital file that uses 262 
photometer measurements, and Photoshop’s map to make the <scene_luminance> 263 
(64-bit per pixel double precision flotating point) file. This file is the Scene that is 264 
convolved with the CIE GSF to calculate <retinal_contrast> of the pattern of light on 265 
the Retina (image 4). These 64-bit double precision arrays, images(3) and (4), 266 
cannot be accurately rendered on a display at full precision. The next two rows 267 
show the four images used to analyze and visualize the effects of glare. Images (5) 268 
and (6) are converted from 64-bit double precision data to 8-bit log, scaled to the 269 
Scene’s [log_range=2.3]. These images are used for numerical analysis of pixels’ 270 
values, and their plots of Scene and Retina. The bottom-row uses Pseudocolor 271 
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renditions to visualize the spatial distribution of light on the retina. Many glare-272 
generated gradients in retinal contrast are invisible in <grayscale>. Pseudocolor 273 
rendering makes the spatial patterns of these gradients highly visible. Each 274 
Lightness Illusion uses these 8 different images to create the Illusion; calibrate its 275 
Scene luminances; calculate the light on the Retina; and quantitatively analyze 276 
glare’s re-distribution of light. 277 

(Figure 1 goes here) 278 

(Figure 1-left-side) illustrates the fabrication and calibration of each Lightness Illusion. 279 
The <test_retinal_contrast.py> program (right-side) converts the Illusion’s Photoshop map 280 
using calibration measurements of each digit values to make the <scene_luminance> input 281 
array. The program calculates <retinal_contrast>, and provides tools to analyze the effects 282 
of glare. 283 

In today"s world, most visual media are seen on electronic displays. Their ~10% surface 284 
reflectance appears black in displayed images. Digital displays of illusion have replaced 285 
those on printed pages. Investigating appearances in Natural Scenes have become the study 286 
of edges and gradients of light, replacing studies of printed reflectance and ambient 287 
illumination. It is difficult to discuss illusions on a screen in terms of its reflectance and its 288 
illumination. Its reflectance is irrelevant background light, because the image is all emitted 289 
light. Displays emit illumination with edges and gradients. The thoughtful explanation of 290 
illusions has moved on to the analysis of spatial patterns of light. The analysis of 291 
reflectance and illuminance becomes a historical footnote, while the scene luminances" 292 
spatial array is the source of information that generates the array of receptor’s quanta catch, 293 
that generate appearances.  294 

The appearance of every segment in illusions and Natural Scenes involves the entire 295 
human visual system. That system has a visual angle of 120°, and uses the simultaneous 296 
responses of all 100 million retinal receptors. Neural-spatial processing compares all the 297 
receptor responses to generate an illusion’s appearances. Glare simply adds a new layer of 298 
complexity to neural-spatial vision’s input from receptors. Receptors capture quanta, and 299 
neural-spatial comparisons find edges, sharpens them, and ignores the subtle gradients 300 
caused by glare. This article’s study of Lightness Illusions is limited to glare’s 301 
transformation of scene luminance inputs to all retinal contrast outputs, and the 302 
appearances of retinal contrasts.  This article does not model, nor predict appearances of 303 
Lightness Illusion segments. The study of computational models of appearance is an 304 
enormous topic that involves many different approaches (Land and McCann,1981; Frankle 305 
and McCann,1983; Adelson,2000; Gilchrist,2006; McCann and Rizzi,2011; Blakeslee and 306 
McCourt,2015; McCourt,Blakeslee,Cope,2016; Rudd, 2020). This topic is far too large to 307 
fit in the scope of this paper.  308 

This article simply presents Lightness Illusions, and asks the reader wheter ROI A  is 309 
lighter, the same, or darker than ROI B. It also asks if a particular scene segments appears 310 
to be uniform. This study shows that glare is hard to see, namely its effects are nearly 311 
invisible, or invisible. Because it is so hard to appreciate glare by visual inspection, 312 
quantitative analysis of glare is required in evaluating models of vision, imaging, and 313 
particularly image-quality assessments. 314 
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Both Glare and Neural Spatial processing are scene-dependent mechanisms. While more 315 
efficient scene-independent calculations can model receptor quanta catch for spots of light 316 
in a no-light surround (Colorimetry), they cannot accurately calculate appearances in  317 
Natural Scenes(McCann, 2020). Glare is the first spatial transformation of scene 318 
information. Quantitative studies of human retinal images shows that neural spatial 319 
mechanisms can overcompensate for glare(McCann, Vonikakis, Rizzi,2018:pp.142-159). 320 
The study of neural processing requires quantitative data of its input, namely the array of 321 
all receptor responses. 322 

Section 2 of this article describes how to calculate retinal_contrast and how the program 323 
uses pseudocolor to visualize it. Section 3 describes nine Lightness Illusions, their 324 
numerical analysis, and pseudocolor rendering. These results identify Glare’s Paradox, 325 
namely that human neural processing overcompensates glare’s effects in Contrast, but not 326 
in Assimilation. Section 4 discusses the visibility of gradients of light; compensation for 327 
glare by neural spatial processing; and glare’s role in Image Quality metrics. 328 

2.  Methods and Materials: Calculating and Analyzing Intraocular Glare 329 

As illustrated in Figure 1, we made an image in Photoshop® of the familiar Contrast 330 
Illusion (ROI-Grays darker in White; lighter in Black). We sent the illusion’s digital file to 331 
a calibrated display [range of cd/m2 set to 200:1]. We measured the luminance of all scene 332 
segments.  The Python program that calculates glare’s effects on Illusions has two parts. 333 
First, it makes an array of calibrated display luminances and convolves it with the CIE 334 
GSF. Second, it makes meaningful visualizations of the millions of pixels in each scene, 335 
and its retinal image.  336 

2.1. Calculating Retinal Image  337 

The GSF specifies the fraction of a pixel"s light scattered onto every other pixel in the 338 
whole scene. It varies as a function of angular distance (1/60° to 60°) between donor and 339 
receiving pixel. The convolution sums all the 106 glare contributions from all the other 340 
pixels. Hence, 64-bit floating-point double precision was used for the convolution. The 341 
retinal image calculation (Vos and van den Berg, 1999) covers 60° visual angle, and the 342 
range of scattered light [log10 [Leq/Egl]total) ] covers 8 log10 units (Figure 2).   343 
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 344 

Figure 2 Glare Spread Function plotted on log-log axes. Note the extreme ranges 345 
of these axes. The horizontal visual-angle axis covers (1 minute to 60°). The 346 
vertical axis plots the decrease in glare as the function of the angular separation 347 
between donor pixel and receiving pixels. It covers 8 log10 units (150,000 to 0.005). 348 
Despite its range, it does not approach a constant asymptote. The glare on each 349 
receiving pixel is the unique sum of contrition of all the other scene pixels. Glare is 350 
a scene-content-dependent transformation of scene luminances. 351 

 352 

(Figure 2 goes here)  353 

 354 

2.2.  Optical Glare Spread Function 355 

The calculation of light on the retina used the GSF filter Equation (8) formula (Vos and 356 
van den Berg, 1999) to calculate the spatial distribution of the light on the retina. The 357 
retinal image is the sum of scene luminance, plus light scattered into each pixel. The 358 
amount scattered into each pixel depends on the luminance of the donor pixel and its 359 
angular separation between the donor and receiving pixels. CIE GSF calculations are 360 
described in McCann and Vonikakis (2018) that contains additional background 361 
information. Using this CIE standard, we calculated the relative luminance at each pixel 362 
(Leq/ Egl). It is the ratio of Equivalent Veiling Luminance (Leq in cd/m2) and Glare 363 
Illuminance at the Eye. In the calculations we used brown eye color pigment=0.5 and 364 
age=25 to calculate predictions for young observers, with minimal-glare vision. 365 

 366 
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 2.3  Glare Spread Function Convolution Filter Kernel  367 

Using equation (2) in CIE-GSF, we first compute the 2D filter kernel (Vos and van den 368 
Berg, 1999), which will be used in the convolution with <scene_luminance>. The kernel"s 369 
radius is equal to the maximum size of the luminance input array (+1 for symmetry). This 370 
ensures that every pixel will be able to 'affect' all others during convolution.  When the 371 
center of the kernel is positioned on the top-left pixel, the kernel should cover the whole 372 
luminance input array. The python code is written to process any size of input luminance 373 
array.  We have to adjust the kernel size, to accommodate the input size, and maintain 374 
angular calibration of the image. Even though the radius of the kernel is large, its values 375 
are never zero. This means that every position in the retinal input array will contribute to 376 
all the others. Once the 2D filter kernel values are calculated from Equation(2), they are 377 
normalized by their total sum, ensuring that all add up to unity and thus, no energy is 378 
introduced during the convolution. Also, there is no radial distance at which the glare 379 
contribution reaches a constant asymptotic value.   380 

The next operation computes the retinal image by convolving the filter kernel on the scene 381 
luminance array, resulting in retinal contrast. Performing the convolution, with such a 382 
large size kernel in the spatial domain, is computationally expensive, since each of N pixels 383 
is affected by all others. As such, the complexity of this operation is O(N2). Performing the 384 
convolution in the frequency domain shortens computation time, resulting in O(NlogN) 385 
complexity. Our Python code performed MATLAB’s <imfilter>, convolution in the 386 
frequency domain using the Fast Fourier Transform (FFT).  387 

The calculation of the 2D filter kernel, as well as the convolution operation with the 388 
<scene_luminance> input array, are implemented in <test_retinal_contrast.py> (See 389 
Python script in Data Sheet 1.docx in Supplementary Material).  390 

2.4  Input/Output Ranges  391 

The calculation of retinal contrast from scene luminance modifies an image’s%dynamic 392 
range. There are three aspects to managing range:  393 

• First-Glare redistributes a very small fraction of light from all pixels to all other 394 
pixels   395 
• largest sources of glare light are the highest luminance pixels   396 
• largest recipients of light are the lowest luminance pixels  397 
• input image must represent both the entire range of scene_luminances, and 398 

tiny glare contributions accurately.   399 
• Second-Computational precision of pixel values. The GSF convolution uses 400 

linear, 64-bit double floating point precision to calculate the result of all pixels’ 401 
contributions, and the accumulation of these tiny amounts of light. This need for 402 
precision includes the padding of external input boundaries in the convolution.  403 

• Third-Visualization of input/output information. Calibrated images can exceed 404 
display’s range used to visually inspect them. Displayed rendition of (in/out) 405 
calculation data must account for display’s firmware luminance transformations 406 
of digit values, and vision’s response to light. We also need tools to visually 407 
inspect scenes that exceed the display’s range. We need to inspect data in 408 
gradients-in-luminance by making them visible using pseudocolor.  409 
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2.5  Computational Padding  410 

Computation of values near borders of the input array requires special treatment, because 411 
part of the kernel goes out of the area of the input array. In our Python code, we used a 412 
“boundary replication” padding approach, similar to the MATLAB 'replicate' option for the 413 
imfilter function. According to this, the pixels of the outer rim of the image are replicated 414 
in order to cover the padded area.   415 

• If all the outer edge pixels in <map.tif> file are White(max-digit), the "boundary416 
replication” becomes the equivalent of a uniform white surround 9 times the area 417 
of <map.tif>, with the map placed at the center. Consequently, glare is calculated 418 
as if the target was on a uniform white surround.  419 
 420 

• If the outer edges are min-luminance, glare is calculated as if the target is in a 421 
darkroom on a black background.  422 

Vos and van den Berg (1999) describe the shape of the GSF. That shape does not include 423 
the glare loss of (re-distributed) light from every pixel. In our program the filter kernel is 424 
normalized so the sum of all output retinal_contrast equals the sum of all input scene 425 
luminances. In the <test_retinal_contrast.py> program we verified the kernel in each 426 
calculation: e.g. [kernel sum=0.999999999999998] was a typical result. Without this 427 
normalization step, the sum of output could exceed the sum of input. The filter calculates 428 
the light distribution projected on a sphere (CIE GSF); and the program converts that to the 429 
light projected on a plane. Input pixels and output pixels are planar and have identical 430 
dimensions. It does not include the effects of pre-retinal light absorptions.  431 

2.6  Range Analysis 432 

The test_retinal_contrast.py program has input values between 0 and maximum luminance. 433 
For analysis, the program writes the analytical file <scene_luminance_log _mapped> (8-434 
bit), which records the log-luminance values scaled to <parameter.range>. In other words, 435 
by selecting the input range, and logarithmic scaling, calibrated <scene-luminance> and 436 
<retinal_contrast> data becomes displayable on a monitor for spatial evaluation.   437 

The calculation and output of the convolution, <retinal_contrast> array, is linear, 64-bit 438 
values. The content of the input scene, namely, the population and distribution of 439 
luminances determines the range in the <retinal_contrast> output file. The greater the 440 
population of high-luminance pixels, the higher the mean- and min-values of 441 
<retinal_contrast>. However, since each glare donor pixel sends most of its light to nearby 442 
receiving pixels. The scene"s local organization (pattern of scene’s content) affects the local 443 
range of <retinal_contrast> values. An Illusion’s pixel population and the separations of 444 
max- and min-luminance pixels affects the local ranges of <retinal_contrast>.  445 

2.7 Visual inspection of <retinal_contrast_log > images  446 

Human vision"s spatial-image processing suppresses the visibility of luminance gradients 447 
(McCann, et al.,1974; McCann, 2021b). Visual inspections of <retinal_contrast> images 448 
make two flawed assumptions. First, it ignores our vision"s spatial suppression of gradients.  449 
Second, it ignores the fact that looking at the calculated image adds a second pattern of 450 
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actual optical veiling glare to the monitor-displayed calculated glare image. Visual 451 
inspection is quantitatively inaccurate. Numerical analysis, and pseudocolor renderings are 452 
needed to examine retinal contrast:  453 

• GSF transformed all discontinuous sharp edges into steep retinal gradients.   454 
• Many low-slope gradients are below human detection threshold. Visual inspection 455 

does not reveal these gradients.  456 
• Pseudocolor maps, with visible quantization steps, converts subtle luminance 457 

gradients into discriminable bands of color, allowing readers to visualize bands of 458 
equal-luminance regions, that reveal glare’s nonuniform luminance transformations.  459 
 460 
 461 

 462 
  463 

Figure 3 - Required data for calculating <retinal_contrast>, and analyzing the 464 
effects of glare. Columns illustrates the sequential steps in 465 
<test_retinal_contrast.py>: Image on Display; GSF Convolution; Grayscale and 466 
Pseudocolor Analysis. Rows identify the Files; Scenes; and Retina.  Files-(top-row) 467 
identifies the names, specifications, and precisions at each step. The terms 468 
nonlinear, linear, and log refer to plots of cd/m2 vs. digit value in the images. The 469 
measured luminances from the display were a nonlinear function of Photoshop 470 
digits. The program’s calibration step made <scene_luminance> linear for the 471 
convolution. The analysis of glare used [log_range=2.3].  Scene-(middle row) 472 
illustrates the appearance of the image on the display in the first column; the CIE 473 
GSF convolution in the second; the normalized cd/m2 input image in the third; and 474 
the Pseudocolor visuization of the uniform luminance patches in the fourth column. 475 
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Note the Color-bar on the right side of this image scene. It plots all 256 476 
pseudocolor samples and identifies the [log_range] of the image. Max luminance is 477 
White with [scene_luminance_log = 0.0] while Min luminance is Black with 478 
[scene_luminance_log = -2.3]. This Color-bar links the RGB digit vaues to log 479 
luminances.  480 

Note that all Gray pixels in Scene(Pseudocolor) have the same Color-bar 481 
visualization (green RGB triplet [192, 255, 64]). That triplet is the Pseudocolor 482 
output for all grayscale digits in the scene from digit 194 to 197, that calibrates to a 483 
log scene luminances range between -0.52  and -0.55. Each Color-band is 484 
traceable to log luminance cd/m2 values. 485 

The second column in Retina-(bottom-row) shows a Pseudocolor 3D plot of 486 
convolution kernel for the CIE GSF. The third column shows the grayscale log 487 
retinal contrast image used to provide calibrated data for plots, and numerical 488 
analysis of <retinal_contrast> image segments.  The fourth colmn shows the 489 
Pseudocolor image used for visual inspection of the spatial pattern of gradients. 490 
Gradients are not visible in grayscale images, but are clearly observed in 491 
Pseudocolor. Note Contrast’s large Black surround for the ROI in the third column. 492 
Compare it with the Pseudocolor’s visualization of in the fouth column. 493 
Peudocolor’s bands of colors reveal the magnitude, and complexity of glare’s 494 
gradients. 495 

 496 
(Figure 3 goes here) 497 

Figure 3 Files(top-row) describes the specifications of image files used in the program’s 498 
sequence (left to right). Scene(middle-row) begins with a reproduction of the Illusion on 499 
the display(left column); followed by images used in analysis. Retina(bottom-row) shows 500 
images of the pattern of light on the retina scaled to [log_range=2.3], the input range of the 501 
scenes' luminances. 502 
The CIE GSF uses linear-luminance input data, and high-precision calculation to 503 
accumulate all the very small amounts of light from millions of other pixels that fall on 504 
each individual pixel. There is no practical method for displaying in this article the actual 505 
linear <retinal_contrast> with 4 million pixels at 64-bit precision. 506 
 507 
The Pseudocolor renditions allow observers to visualize glare’s gradients of light on 508 
receptors. As discussed above, visual inspection does not correlate with quantitative light 509 
values. An accurate analysis of the input and output arrays requires numerical inspection 510 
and visualization techniques. Readers can identify specific <retinal_contrast_log> values 511 
by matching any image pixel’s pseudocolor color to the calibration color map. 512 
 513 

2.8 Pseudocolor color-index maps 514 

Figure 4 illustrates two different LUT visualizations using different color-index maps. The 515 
Python program includes the pseudocolor [cmap.LUT] with 64 color index values, arranged 516 
in 8 progressions (top-half). Below it, [3-3-2RGB.LUT] is a different kind of color-index 517 
map that emphasizes the visibility of gradients.  It illustrates glare"s re-distribution in low-518 
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luminance regions better than [cmap.LUT]. It was applied to retinal contrast using NIH 519 
(2021) application ImageJ®.  It is hard to identify the square’s Max-Min boundary with this 520 
LUT. The Superposition panel (bottom-right) identifies the location of that very sharp 521 
input-edge using four quarter-image sections. The thin red band falls at max/min boundary, 522 
that became a steep gradient after glare.  523 

 524 
 525 

Figure 4   Illustrations of two different Pseudocolor Look Up Tables (LUT). The 526 
<cmap.LUT> (top-row) emphasizes the order of lightness appearances. The left 527 
panel shows a 2049 by 2049 pixel background (min-luminance) with a centered 528 
601 pixel (max-luminance) square. The left panel is the input file 529 
<scene_luminance_log-mapped> using <grayscale.LUT>. The middle panel is 530 
<retinal_contrast_log_mapped> showing the effects of glare. The right applies 531 
<cmap.LUT>, and shows its color map in its Color-bar on the right. This is used to 532 
analyze most of the scenes in this paper. Its color map is encoded in the 533 
<retinal_contrast.py> program. It used 64 different color bands. 534 

Figure 4(bottom-row) shows a different LUT, that is implemented in a different 535 
way. It has four times more color bands, for better visuaiztion of low-slope 536 
gradients. The bottom-left panel shows all 256 different colors in the [3-3-2 537 
RGB.LUT] color map, from Min Black [0] to Max Yellow [255]. Its color index 538 
emphasizes the visibility of gradients. The bottom-middle panel  applies the [3-3-2 539 
RGB.LUT] to the retinal contrast file. Note the differences in visualization between 540 
[cmap] and [3-3-2 RGB.LUT]. The [cmap] rendition preserves the sense of the 541 
Lightness separation beween Max and Min regions. The [3-3-2 RGB] rendition 542 
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does not. However, it reveals the presence of gradient throughout the large Min 543 
region.  544 

Using [3-3-2 RGB LUT] makes it difficult to find the location of the highly visible 545 
edge between the Max center and the Min surround. The bottom-right panel 546 
identifies the location of that Max/Min input-edge in <3-3-2 RGB] using the 547 
Superposition of four quarter-image sections. The Superposition contains:  548 

1. top-left quadrant is log scene luminance;  549 

2. top-right quadrant is log retinal contrast);  550 

3. bottom-right is background-alone using [3-3-2 RGB]; 551 

4. bottom-left quadrant is square-alone using [3-3-2 RGB]; 552 

A thin red band locates the Max/Min boundary, that became a gradient after glare. 553 
(Figure 4 goes here) 554 

3.0  Results 555 

This article studies glare’s role in three types of Lightness Illusions: Contrast, Assimilation, 556 
and Natural Scenes. We begin with four “Contrast+Assimilation” targets in Figure 557 
5(A,B,C,D).  A Contrast Illusion is the top-half, and Assimilation Illusion the bottom-half. 558 
In the Scene row, the Contrast, Gray-in-Black surround ROI appears lighter than Gray-in-559 
White. Below Contrast, we add Michael White’s Assimilation Illusion (White,2010). In 560 
Assimilation, Gray-in-Black ROI appears darker. 561 
 562 
All Contrast+Assimilation targets are restricted to three scene components: White, Gray, 563 
and Black. Identical Gray rectangles (ROI) appear darker in Contrast’s Black surrounds,  564 
and lighter in Assimilation’s surround. These different Grays are the result of scene’s 565 
spatial content, and spatial arrangements of segments made from uniform Whites and 566 
Blacks. The ROI-Grays’ appearances are the consequence of two spatial properties of the 567 
scene. First, scene’s histogram, describing populations of all scene pixels (independent of 568 
location). Second, size, shape, and location of White and Black segments. In other words, 569 
the arrangements of the spatial content in the “rest-of-the-scene” modifies receptors’ 570 
responses, and the appearances of GrayROI equal scene_luminances. 571 
  572 
Contrast+Assimilation Illusions are robust. Contrast is insensitive to target size (or viewing 573 
distance) that changes retinal size (McCann, 1978). Changing viewing distance alters 574 
spatial-frequency distribution (intensity vs. cycles/degree). As well, Contrast+Assimilation 575 
are insensitive to varying luminance levels. Viewing them in conditions that excite only 576 
rods generates the same spatial effects; they just appear dimmer. Viewing color 577 
Contrast+Assimilation Illusions in conditions that excite only rods and long-wave cones 578 
generates the same color spatial effects, they just appear different hues, and less-sharp than 579 
in photopic vision(McCann, 2012, 2021c). 580 
 581 
Natural Scenes are much more complex because they do not have any of 582 
Contrast’s+Assimilation’s restrictions: uniform scene segments, limited range, uniform 583 
illumination. Natural and complex scenes include the interactions of illuminants, 584 
reflectances, light emitters, multiple reflections, refractions, shadows, and variable 585 
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dynamic ranges. The light coming to the eye can be almost any light distribution. Natural 586 
Scene Lightness Illusions include experiments that generate different appearances from 587 
GrayROI with identical scene luminances. 588 
3.1 Contrast and Michael White’s Assimilation Targets 589 
First, we made a display’s test target on a display; then, measured its luminances; then, 590 
calculated the light on the retina, and finally compared scene luminances with retinal 591 
contrasts. 592 
 593 

 594 
 595 

 596 
Figure 5 - (A, B, C, D) Four Contrast+Assimilation targets: Scene (top-row) 597 
Displayed images on the computer screen <map.tif>; Retina (middle-row) 598 
calculated pattern of light on receptors <retinal_contrast_log_grayscale>; 599 
Histograms (bottom-row) linear (black fill) and log (blue fill) histograms of 600 
<retinal_contrast_log_grayscale>. Above the horizontal axis the color bar 601 
illustrates [cmap.LUT] pseudocolor mapping. All Figure 5 renditions used 602 
parameters [log_range=2.3], [padding=replicate]. 603 
  604 

(Figure 5 goes here) 605 
 606 
In Figure 5-Scene (top row) A,B,C,D shows four targets displayed individually on the 607 
computer. Each grayscale Contrast+Assimilation scene is a digital array [2048, 2048] 8-bit 608 
viewed on a Powerbook computer screen at 24 inches, each subtending 10° by 10°. Each 609 
pixel subtends 0.24 minutes of arc. This figure uses a gray-blue background to identify the 610 
boundaries of the four targets. A&B targets differ in the size of both Contrast surrounds; 611 
A’s is much larger than B’s. This affects the amount, and distribution of glare in A&B, but 612 
does not change the GrayROI appearances. In C&D, outer bands are Black, replacing 613 
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White in A&B. This affects the amount and distribution of glare in both Illusions, but also 614 
does not change Illusions ’appearances. 615 

The top row (Figure 5-Scene) shows the images on the display. Placing both Assimilation 616 
and Contrast together in each target does not disturb either Illusion. They do not interact. 617 
Each does not affect the others’ appearance. Both Contrast and Assimilation appear 618 
indifferent to each other. These Illusions add another kind of robustness, and implies that 619 
both mechanisms, Contrast and Assimilation, are influenced by relatively local-spatial 620 
properties.  621 

3.1.1 Numerical analysis of scene input <map.tif>  622 

Scene’s digital values <map.tif> were selected to make the best-looking Illusion on the 623 
display. In all four targets the Konica-Minolta CS-100A measurements were: Whites (450 624 
cd/m2); Grays (136 cd/m2); and Blacks (2.24 cd/m2) from a Powerbook Pro XDR display.  625 
All targets had a linear range 200:1 [log_range=2.3]. In all targets, all Gray segments had 626 
identical locations, and occupied 14% of each target’s area. In targets A&B, White 627 
occupied 57%, and Black 29%. In targets C&D, White occupied 29%, and Black occupied 628 
57% area. These variable patterns of Whites and Blacks caused major changes in glare, 629 
shown in retinal_contrast’s histograms. However, these changes in the “rest-of-the-scene” 630 
do not alter the appearances of the GrayROIs.  631 

3.1.2 Appearance of calculated retinal_contrasts  632 
5-Scene recreates the appearances on the display. The Python code combines the Scene’s 633 
design with its luminance calibration to make convolution’s input array (normalized linear 634 
luminances) at 64-bit, double precision. The convolution calculates high-precision 635 
retinal_contrast values.   Three additional steps are needed to analyze the output: precision 636 
(64 to 8-bit) for display: mapping to input’s range; and logarithmic scaling.  Figure 5-637 
Retina(middle-row) shows [log10_range=2.3] output. Retina’s logarithmic data optimizes 638 
grayscale and pseudocolor visualizations. The <retinal_contrasts_log_grayscale> images 639 
have apparently less-sharp edges, and have less range of light. Glare has rounded the  640 
scenes’ square-wave edges that appear sharp when viewing them on the display (Figure 5-641 
Scene).  642 

Vision"s spatial-image processing has synthesized these sharp-edge appearances from the 643 
retinal image. Thinking about the observer’s appearances of Retina’s fuzzy images, recalls 644 
many relevant facts. For example, cones in the fovea have approximately 1 minute of arc 645 
spacing. However, stereo depth can resolve 2 seconds of arc in retinal disparities. 646 
Observers with good binocular vision can have stereo-acuity thresholds as low as 2 seconds 647 
of arc, and 80% have 30 arcsec thresholds (Howard and Rogers,2002). In hyper-acuity, 648 
optimal discrimination threshold for relative positions of two features in the fovea is a few 649 
seconds of arc(Westheimer and McKee, 1977). Vision’s spatial-image processing is more 650 
precise than cone spacing. Hubel and Wiesel(1965) discovered that Visual Cortex neurons 651 
respond to edges, while they are unresponsive to spots of light. Zeki"s v4 cortical color 652 
cells respond to complex images, but not to !spots of light” (Zeki,1993). Vision uses 653 
spatial-image processing to synthesize the appearance of sharp edges. Today"s powerful AI 654 
object recognition techniques use Hubel & Wiesel, and edge-detection techniques in early 655 
stages. Edges lead to shapes, that lead to identifying objects. Engineering development of 656 
“Event Cameras”, that mimic human image processing are wide spread(Curtis,2022).  657 
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These observations, as well as innumerable others since the 1960s, changed vision research 658 
and electronic imaging by mimicking human spatial processes in Retinex, Object 659 
Recognition and Neuromorphic Cameras. Vision, human and virtual, went from using 660 
scene-independent models of pixels to scene-dependent models of images. 661 

3.1.3 Numerical analysis of calculated retinal_contrast. 662 

Figure 5-Histograms plots linear and log histograms of Figure 5-Retina for (A,B,C,D).  663 
All histogram plots are [log_range=2.3], equal to input range. Recall that the scene 664 
luminance input images have histograms (not shown) of only three spikes at digits 255, 665 
145, and 21. Glare has re-distributed those spikes into four very different light patterns. 666 
Target A is the most familiar version, viewing them on a white paper, or white screen. 667 
Glare reduces RetinaA to 67% log_range. The outer white band adds enough glare light to 668 
the large Contrast Black surround to set the abrupt lower range limit at digit=83.  Target 669 
RetinaB replaces Contrast’s large Black, and large White surrounds with Assimilation’s 670 
stripes. Here, Contrast"s Gray test areas are still surrounded by Black, and by White 671 
segments, but they are alternating bands. These changes greatly reduced the average 672 
angular distances between Whites (glare net donors) and Blacks (glare net receivers). The 673 
result of closer glare sources decreased RetinaB to [52%log_range]; half that of the input 674 
scenes. 675 

In Targets SceneC and SceneD the outer band is Black. The program’s 676 
[padding=replicate] setting for outermost pixels calculates displays in a darkroom on a 677 
Black background. Replacing White with Black outer edge, and decreasing the size of 678 
Contrast’s surrounds in D caused a major increase in range of retinal_contrast_log. The 679 
abrupt lower limit of the minimal retinal_contrasts in RetinaA and RetinaB resulted from 680 
nearby White segments in the outer edge and Contrast regions. Here, in RetinaC and 681 
RetinaD retinal ranges increase because there is less glare light in Blacks. Target RetinaC 682 
range is [95%log_range]; Target D range is [100%log-range]. Overall, these four targets 683 
varied from 52% in RetinaB to 100% in RetinaD. 684 

Numerical analysis of calculated retinal contrast describes two distinctly different types of 685 
targets: one with a max-luminance outer band (RetinaA, RetinaB); the other with a min-686 
luminance band (RetinaC, RetinaD). Nevertheless, observed appearances of Contrast and 687 
Assimilation are constant, despite major changes in retinal contrasts’ patterns, and the 688 
subsequent responses of retinal receptors.   689 

Retinal contrast in Figure-6Retina(A,B,C,D) shows that all four Contrast Illusions exhibit 690 
Glare’s Paradox; namely, regions-of-interest Gray-in-White appears darker despite larger 691 
amounts of glare light. And Gray-in-Black ROIs appears lighter despite less glare light.  692 

For example: in top-half Contrast(A) GrayROI rectangles have uniform 693 
<scene_luminances>.  After glare those rectangles become ranges: Gray-in-Black[68%-694 
83% log-range] retinal_contrasts, and [81%-93% log-range] in Gray-in-White. The large 695 
white surround adds more glare light to its GrayROI. The psychophysical challenge is to 696 
understand why more-light in GrayROI-in-White in all Retina(A,B,C,D) look darker in 697 
Scene(A,B,C,D).  698 

Assimilation does not exhibit Glare’s Paradox; more-light in GrayROI-in-White in all 699 
Retina(A,B,C,D look lighter in Scene(A,B,C,D). 700 
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Glare created four different log range outputs. To understand different spatial patterns of 701 
light re-distributions, we use pseudocolor LUTs to visualize the gradients of light on 702 
receptors.  703 
 704 

 705 
 706 

Figure 6 Pseudocolor renditions of Figure 5(ABCD) and [cmap.LUT] color 707 
index map(E). Scene (top-row) <scene_luminance_log_cmap> images 708 
[log_range=2.3].  Retina (middle-row) calculated <retinal_contrast _log 709 
_cmap> images. Grays only (bottom-row) copies of Retina are covered by a 710 
light-blue mask over all the max- and min-luminances. This leaves Grays 711 
only pixels in all four Illusions. Enlarging the Grays Only image illustrated 712 
glare’s distortions of uniformity in GrayROIs. Column (E) adds an enlarged 713 
color-bar showing the Pseudocolor conversion from digits to color patches. 714 
The range of digits is [0, 255]; the range of log_retinal_contrast is [-2.3, 0]. 715 
The black vertical lines A, B, C, D plot the ranges of <log _retinal_contrast> 716 
of all Black pixels (scene_luminance=2.2 cd/m2) in the each Illusion. The 717 
horizontal line in each range is its mean log _retinal_contrast value. Every 718 
Black glare-receiving pixel value varies with the angular distances between 719 
itself and all the donating White and Gray pixels. The changes in spatial 720 
position of these scene elements causes the dramatic variability of Black 721 
retinal contrast values. Nevertheless, they have identical rich black 722 
appearances on the display (Figure 5-Scene ABCD). 723 

 724 
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(Figure 6 goes here) 725 
 726 
3.1.4. Pseudocolor analysis of calculated retinal contrast 727 
Figure 6 maps images in Figure 5 using pseudocolor.  All 4 targets have only three 728 
luminance values: (max-White, Gray, min-Black) illustrated by images in the Figure 6-729 
Scene(A,B,C,D). Pseudocolor renders max=white; gray=green; min=black. Figure 6-730 
Retina applies the same LUT to retinal images. As expected, glare has minimal, but 731 
apparent changes in Whites’ pseudocolor segments. Many Whites that are adjacent to 732 
Black become yellow at the edge. 733 
 734 
The substantial, but subtle effect on Gray scene segments is seen best by studying the 735 
Grays only row. The Gray border around Contrast and Assimilation Illusions shows that 736 
retinal_contrast has a different border patterns in A,B,C,D. Contrast’s GrayROI rectangles 737 
are affected by the traditional large White and Black surrounds. The outer White and Black 738 
bands and the replicate option adds to scene-dependent variability. 739 

However, the Gray bars in the lower Assimilation section appear to be almost constant in 740 
each Illusion.  Assimilation’s horizontal bars with White bars above and below in Figure 741 
6(A-right side), adds more glare to Gray bars that appear lighter in 6-Scene(A). As well, 742 
glare adds less light to (left-side) Gray bars that appear darker.  In all Figure 6-743 
Scene(A,B,C,D)  Assimilation’s horizontal bars (right-side) adds more glare to Gray bars 744 
that appear lighter. The opposite happens in the Contrast’s rectangles in the top half of 745 
these illusions. Their appearances show Glare’s Paradox: Darker appearances have more 746 
glare light, and lighter appearances have less. 747 

The most striking result from these four targets is the retinal_contrast maps of Black 748 
regions. These constant, uniform scene segments became highly variable, nonuniform, 749 
scene-specific retinal contrast values. The ranges of Retina Black are plotted in Figure 750 
6(E) beside the color bar.  The effect of glare on Blacks is very large and highly variable. 751 
The appearances of all Black segments are constant, but the amounts of light on receptors 752 
are variable: (A)log_range[49%-98%]; (B)log_range[62%-99%]; (C)log_range[26%-93%]; 753 
(D)log_range[15%-86%] .  754 

Scene has [log_range=2.3]; and Retina(Blacks-Only)  has [log_range(A)=1.1]; 755 
[log_range(B)=0.9] [log_range(C)=1.5] [log_range(D)=1.7].  Scenes(A,B,C,D) are not 756 
million-to-one range HDR targets; they are normal range 200:1 displays. How does vision 757 
generate nearly identical appearances from such variable information in receptor 758 
responses? What mechanisms can calculate these results?  759 

By addressing the actual image on the retina, we can no longer assume a zero-glare 760 
hypothesis in “normal” scenes. That zero-glare hypothesis made us believe that designs of 761 
Illusions were appropriate stand-ins for uniform-surface objects in the world that had 762 
recognizable independent shapes and interpretable perceptual properties. Real retinal 763 
images require mechanisms that finds these shapes in each illusion’s nonuniform unique 764 
retinal gradients. Then, these mechanism must find a way to make them appear identical. 765 

Glare does not alter the fundamental proposition of Illusions, namely that equal 766 
scene_luminances do not generate equal appearances. However, glare creates a unique 767 
spatial pattern for each of the four Contrast+Assimilation targets in (Figure 6). Observers 768 
do not see glare’s re-distribution of light.  Nevertheless, glare is scene specific. There are 769 
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no accurate short-cuts modeling these targets because the GSF never reaches an asymptote. 770 
Short-cuts based on highly simplifying assumptions can be misleading. Models of glare 771 
must incorporate all the individual scene-dependent contributions from all the other pixels.   772 

In summary, Figure 6 visualizes the retinal light pattern that becomes the array of receptor 773 
responses. That pattern shows the scene-dependent transformations of scene_luminances. 774 
Distortions of GrayROI luminances, makes them unequal retinal_contrasts. This affects 775 
the asserted logic of a Lightness Illusion, that GrayROIs are equal stimuli. The range 776 
distortions for GrayROIs is small. However, that range is very large for Blacks, even 777 
though the range is limited to 200:1. 778 

The summary from Section 3.1 is very simple. Figure 5-Scene shows all four 779 
Contrast+Assimilation Illusions on the display. They are made of only 450, 30, and 2.2 780 
cd/m2  regions. Figure6-Scene shows the spatial distribution of scene_luminances. 781 
Figure6-Retina shows glare’s redistributed light patterns on receptors. 782 

Please take the time to magnify these images and evaluate the spatial patterns caused by 783 
glare’s transformations. 784 

3.2  Contrast and Todorovic’s Assimilation Targets 785 
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Figure 7 Contrast and Todorovic Assimilation targets. (A) Scene: Image  [log_range 787 
= 2.3] displayed on computer screen (top-half is Contrast; bottom-half is 788 
Assimilation). (B) Horizontal log luminance plots through the centers of the circles 789 
and crosses. Horizontal log scene luminances plots are identical in top Contrast and 790 
bottom Assimilation (dashed black line). Log retinal contrasts are different: circles 791 
(blue line at blue arrows); crosses (red line at red arrows). (C) Retina: Calculated 792 
log retinal contrast using [padding=replicate] and Pseudocolor [3-3-2RGB LUT], 793 
[log_range= 2.3]. (D) Enlargements of Retina Assimilation crosses: Gray-in-Gray 794 
surround (left); Gray-in-White surround (middle); Gray-in-Black surround (right). The 795 
3-3-2 RGB LUT reveals equal luminance regions in Retina. Recall that the Scene is 796 
made up of only 4 uniform luminance (White, Gray cycles and crosses, Black, and 797 
background). Glare transforms Scene uniformities in very complex nonuniform 798 
patterns on the Retina. Blacks shows the largest glare distortions.These luminance 799 
distortions patterns are invisible when viewing the display in Figure 7(A). 800 

 801 
In Figure 7(A) we have 8 identical gray luminances (4 circles-top and 4 crosses-bottom). 802 
On the left side  these grays (uniform background) all appear the same lightness. On the 803 
right, the four grays (different backgrounds) have different appearances.  804 
 805 
On top-right we see the background is the traditional Contrast Illusion surrounds: Black 806 
(lighter appearance); White (darker appearance). Below that, Todorovic (1997) 807 
Assimilation is scaled to fit Contrast. In Assimilation apparent-Gray circles are behind slits 808 
in White, and Black foregrounds. In this spatial arrangement, the mostly-White ground 809 
makes Gray appear lighter, mostly-Black makes Gray appear darker.  810 
 811 
We used Python code to calculate the <retinal_contrast> of Figure 7(A) 4096x2048 812 
pixels; 8-bit display. The viewing_distance was 24 inches, subtending 20° by 10°. Each 813 
pixel subtends 0.24 minutes of arc.  814 

3.2.1 Numerical analysis of scene luminance and calculated retinal contrast  815 
Glare changes the output range of linear retinal contrast to 62:1, compared with the input 816 
range of 200:1. The blue arrows and red arrows in Figure 7(A) indicate the locations of 817 
two horizontal digital (1 pixel high) scans across the input and output images of the 818 
Contrast Illusion’s Gray circles and Assimilation crosses.  819 
 820 
The dashed-black line (Figure 7B) plots the input scene luminance values. These inputs 821 
are identical at both blue and red arrows. They plot input, and illustrate edge sharpness in 822 
displayed scene_luminance. They pass through a portion of all 4 types of scene segments 823 
(W,B,G & background).  824 
 825 
Along the blue scan, glare has reduced retinal_contrast to [log_range=1.7]; and along red 826 
scan Assimilation [log_range=0.75]. Linear values are[Scene range=200:1; Contrast 827 
range=50:1; Assimilation range=5.6:1]. Assimilation segments have lower range and more 828 
rounded retinal edges. 829 
 830 
In (Figure 7(B) blue-line plots retinal_contrast_log through the middle-line of all gray 831 
circles. The red-line plots crosses ’middle-line of horizontal arms. The red and blue scans 832 
of GrayROIs are different. In uniform light-gray background, Grays-in-background crosses 833 
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(red) have slightly more scattered than circles (blue). On the right-side (Illusions), 834 
Assimilation’s White foreground adds the most glare light. Contrast’s circle in Black 835 
surround received the least amount of glare in all scene segments. Its large Black surround 836 
becomes a large  asymmetric U-shaped gradient.  837 
 838 
In Figure 7(A) both Circles are examples of Glare’s Paradox. The GrayROI-in-White 839 
appears darker with more glare than GrayROI-in-Black; that appears lighter. Todorovic’s 840 
Assimilation has a very different glare pattern. Here, Todorovic’s Cross-in-White 841 
foreground is maximal glare and Cross-in-Black is minimal. These glare-induced changes 842 
are much larger than Contrast, with opposite effects. Assimilation’s glare adds more glare 843 
to apparently lighter segments; and less to darker ones. Again, Assimilation does not 844 
exhibit “Glare’s Paradox”.  845 
  846 
 847 

 848 
 849 

 850 
Figure 8 Histograms of all Gray pixels in Contrast (circles) and Todovoric 851 
Assimilation (crosses) in different backgrounds. Plots of retinal_contrast_log 852 
scaled to log_range= [-2.3,0.0] vs. pixel count. The vertical axis is a linear count 853 
(256 bins). Each histogram is normalized to its own peak. Gray-in-Black surrounds 854 
are green; Gray-in-gray are blue; Gray-in-White are red. In Assimilation crosses, 855 
glare adds more light to Gray segments that appear lighter in White, and the least 856 
light to Grays that appear darker in Blacks (Figure 7A). The opposite happens in 857 
the Contrast’s circles, showing Glare’s Paradox. 858 

(Figure 8 goes here) 859 
 860 
3.2.2 Histograms of Gray-ROI’s in Contrast and Todorovic Assimilation Targets 861 
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 862 
Figure 8 plots histograms of all Gray pixels in circles and crosses in different 863 
backgrounds. Contrast and Assimilation differ in ranges and distributions of glare. In 864 
circles (Figure 7(A-top) the max/min edges are 46 minutes radius from their centers. The 865 
crosses are 10 times closer to max/min edges (4.2 minutes at nearest pixel). In 866 
Assimilation, glare adds the most glare to Gray-in-White pixels(red-plot). Grays-in-867 
Black(green-plot) have the least glare. In Assimilation, glare adds more glare to Grays that 868 
appear lighter, and the least to those that look darker. The opposite happens in Contrast’s 869 
circles, showing Glare’s Paradox.  870 
 871 
3.2.3 Pseudocolor Analysis 872 
 Contrast and Todorovic Assimilation have uniform scene_luminances with perfect 873 
square-wave edges. There are no gradients in this input digital image. In retinal_contrast 874 
all sharp edges become a wide variety of different slope gradients. Figure 7(C) is a 875 
pseudocolor rendition of <retinal_contrast_3-3-2 RGB.LUT>. Glare transforms uniform 876 
scene Blacks into an assortment of gradients on the retina. Figure 7(C) shows dramatic 877 
local-spatial-transformations of the “equal scene Grays”. The [3-3-2 RGB.LUT] was 878 
designed to visualize numerically uniform scene segments. It does not preserve apparent 879 
lightness, as [cmap.LUT] does. Four uniform scene_luminances, become this very complex 880 
pattern of receptor responses. 881 
Todorovic crosses are made of lines that are 380 pixels long, and only 25 pixels wide. 882 
When viewed at 24 inches these lines subtend 1.5° by 6 minutes of arc. Figure 7(D) shows 883 
enlarged glare gradients surrounding crosses. The sharp pseudocolor edges in Figure 7(D) 884 
allows us to visualize gradients that are invisible to us in grayscale images. The resolution 885 
of these computations was chosen to be slightly higher than foveal cone-mosaic spacing, 886 
but lower than spatial-processing performance in Hyperacuity and Stereo Acuity. This 887 
image describes patterns of light on receptors. There are many subsequent variables that 888 
follow in the visual pathway to appearance: observer acuity, rod and cone sampling, 889 
receptive-field organization, cortical-multi-resolution fields (image domain), or spatial-890 
frequency channels (fourier domain), and neural-spatial processing. These steps are beyond 891 
the scope of this article.  892 
Intraocular glare upsets Lightness Illusions “null experiment”. Glare redistributes scene’s 893 
light patterns. These retinal patterns are unique in every scene because they respond to the 894 
entire pixel population (histogram), and each pixel’s relative positions to each of the other 895 
8-million pixels. The complex-spatial patterns made with Pseudocolor LUTS suggests how 896 
difficult it is to analyze appearances if we restrict ourselves to using single-pixel analysis 897 
of data. Every pixel’s correlation with scene luminance is altered before light reaches 898 
retinal receptors. Predicting appearances based on scene-independent models (extensions 899 
of silver-halide films and Colorimetry principles) is an extraordinary challenge. The light 900 
falling on a single pixel (quanta catch, or CIEXYZ) is an unreliable prediction of its 901 
appearance. The only condition in which single-pixel data correlates with appearance is the 902 
special case of perfectly uniform segments, in uniform illumination, in constant “rest-of-903 
the-scene”(McCann, 2017; 2020).  We need to recall that appearances are the result of 904 
spatial comparisons. Post-receptor neurons in the visual pathway performs these spatial 905 
image processing steps. Illusions make the point that appearances are the consequence of 906 
spatial comparisons involving “the-rest-of-the-scene”.  907 

 908 

In review



  Glare in Illusions 

 

 909 
 910 
Figure 9 illustration of Land’s B&W Mondrian. Edwin Land’s 1967 demonstration 911 
of his Black and White Mondrian (Ives Medal Address to the Optical Society of 912 
America). 913 

(Figure 9 goes here) 914 
3.3 Edwin Land’s Black and White Mondrian 915 
Figure 9 is a simulation of Edwin Land’s constructed Natural Scene. The original 916 
experiment used over 100 achromatic-matte-surface papers, intentionally made with 917 
different paper sizes and shapes to avoid afterimages(Land and McCann,1971, Daw,1962). 918 
It used an illumination gradient (high-at-bottom), (low-at-top). Land selected two paper 919 
ROIs (circles in this simulation): high-reflectance paper at the top, and low-reflectance at 920 
the bottom. He adjusted the gradient of light so luminances from these papers had identical 921 
scene luminance circles. The top circle appears near white; bottom is much darker. Land 922 
demonstrated that both White and Black appearances were generated by the same light, at 923 
the same time, in the same scene. In 1967, this observation, made by the OSA audience, 924 
was unique. Land’s actual demonstration had greater range of light, and greater range of 925 
appearances than Figure 9. In Land’s HDR scene construction, paper at the top appeared 926 
whiter; and bottom paper appeared blacker. 927 
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 928 

929 
  930 
Figure 10 Land’s B&W Mondrian. Scene (top-row) Mondrian on display; 931 
scene_luminance _log_grayscale, and scene_luminance_log_cmap.  Retina 932 
(bottom-row) retinal_contrast using same LUTs. All Figure 11 calculations used 933 
parameters [log_range = 2.3], [padding=replicate]. 934 
 935 

(Figure 10 goes here) 936 
Figure 10-Scene (top-left) shows the Mondrian on the display; log grayscale, and 937 
pseudocolor renditions. Below are the retinal_contrast_log _mapped images. Pseudocolor 938 
shows clearly how luminance was affected by the gradient of illumination. The scene’s 939 
gradient is barely detectable in the grayscale image. The retinal contrast data show small 940 
amounts of spatial distortion by glare at the Mondrian’s top. Each circle center has 941 
scene_luminance equal to [80% log_range].  After glare, the retinal_contrast top-circle 942 
(appears lighter) is [78% log_range]. The lower darker circle is [84% log_range]. Glare 943 
increased retinal_contrast of the darker circle. This is another example of Glare’s Paradox. 944 
Neural spatial processing overcomes the effects of glare by making the circle with 945 
increased receptor responses appear darker.  946 
 947 

3.4 Adelson’s Checkershadow Illusions 948 
Ted Adelson (1995) made a synthetic target called the Checkershadow® Illusion.  Land 949 
never called his Black&White Mondrian experiment an Illusion. The B&W Mondrian, and 950 
the Checkershadow are, in fact, the same experiment. They are made of highly visible 951 
edges, and hard-to-see gradients. Land used luminance and appearances measurements in 952 
the B&W Mondrian experiment to propose a bottom-up model of calculating apparent 953 
Lightness sensations. As Land pointed out, Lightness does not always correlate with 954 
reflectances (Land,1974). In this research, Lightness is defined as appearance measured by 955 
observer matches to a standard complex target (McCann, Land, Tatnall, 1970). The work 956 
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developed into a multi-resolution application, and hardware implementations (Frankle and 957 
McCann, 1983; McCann, 1999; 2004) that calculated Lightness appearances that correlated 958 
with observer matches (McCann and Rizzi, 2011, pp.293-337).  959 
Land believed that accurate illumination was “unknowable”, as he wrote in the last 960 
sentence of his Ives Medal Address (Land and McCann, 1971). Given the array of all scene 961 
luminances, Retinex’s approach was to build appearance by emphasizing edges and 962 
minimizing gradients. These Land and McCann, and other Retinex algorithms modified the 963 
statistical properties of scene luminance arrays. (McCann and Rizzi,2011). 964 
Adelson’s 1995 version of edges and gradients (Checkershadow®) is in-practice the same 965 
as Land’s B&W Mondrian. Adelson introduced digital gradient attributed to illuminance, 966 
and digital edges attributed to reflectance. Adelson used a different definition of Lightness, 967 
namely “Lightness is defined as the perceived reflectance of a surface. It represents the 968 
visual system’s attempt to extract reflectance based on the luminances in the scene.”  969 
Adelson claimed that “… illuminance and reflectance images are not arbitrary functions. 970 
They are constrained by statistical properties of the world.” (Adelson, 2000). Land and 971 
McCann defined Lightness as observer appearance matches to a standard complex scene 972 
(McCann, Land, Tatnall(1970), Land and McCann(1971); Land(1974). Later, Adelson’s 973 
defined Lightness as a surface perception(Adelson, 2000).  974 
Since this article has limited scope, it cannot resolve which set of statistical properties are 975 
the better framework for appearance: bottom-up statistics of each scene, or top-down 976 
statistics of the world. The article will continue with the study of effects of glare on 977 
Adelson’s Checkershadow’s retinal_contrast. 978 

 979 

 980 
 981 
Figure 11 Checkershadow Illusion - Scene (top-row) reproduces the image on the 982 
display; scene_luminance_log_grayscale; and log_cmap. Retina (bottom-row) 983 
retinal_contrast using the same mapping. All Figure 11 calculations used 984 
parameters: pseudocolor [cmap.LUT], [padding=replicate]. The first three columns 985 
used [log_range=2.3]. The extended White surround for the Tower and 986 
Checkerboard raised the mean retinal contrast values and reduced the total 987 
[log_range=1.2]. The final column on the right used [log_range=1.2] to get a 988 
clearer rendition of retinal_contrast values in this illusion. 989 

(Figure 11 goes here) 990 
  991 
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The Checkershadow has edges connected by gradients. The biggest difference between 992 
Mondrian and Checkershadow experiments is the large-White surround, resembling a 993 
beach scene(McCann, 2012). The Checkershadow has mean scene_luminance of 994 
50%log_range compared with 30% for B&W Mondrian.  995 
That White surround reduces  Checkershadow’s scene_luminance [log_range=1.6] to 996 
retinal_contrast [log_range=1.2]. Adelson’s specified square (Checkershadow, top-edge) 997 
ROI appears darker. Its retinal_contrast values vary from [72% to 90%log_range]. The 998 
lighter-central square varies from [65% to 71%log_range]. The “Illusion” 999 
overcompensates glare because receptor responses to “darker square” are greater than those 1000 
of “lighter square”. It is another example of Glare’s Paradox. 1001 

 1002 

 1003 
Figure 12 Glare’s Paradox-Scene: (top-row) shows Appearances of: Contrast, 1004 
Mondrian [positive and negative], Checkershadow [positive and negative]. 1005 
Retina:(bottom-row) pseudocolor rendering using [cmap.LUT]. On the far right is a 1006 
plot retinal contrast digit value [0,255] vs. pseudocolor samples used to identify 1007 
retinal _contrast_ log values. In total, this article calculates the retinal_contrast 1008 
image for 9 Lightness illusion scenes. All 9 scenes contained GrayROI segments 1009 
that  showed Glare’s Paradox. In the the 5 scenes that contained Assimimilation 1010 
Illusions, none of their pairs of GrayROI showed Glare’s Paradox.   1011 
 1012 

(Figure 12 goes here) 1013 

3.4.1 Glare’s Paradox  1014 
Figure 12(top) shows the appearance of the Contrast, B&W Mondrian, Checkershadow 1015 
computer displays. It adds Negative displays of B&WMondrian and Checkershadow made 1016 
with (Photoshop’s® Invert function). Negative Illusions work very well. The Mondrian has 1017 
a different pattern with top-illumination. The “shadow” in Checkershadow now appears to 1018 
emit light. The [cmap.LUT] (Figure 12 (bottom-row) displays the complexity and variable 1019 
range of Glare Paradoxes. 1020 
 1021 
In the Negative Mondrian, the top-darker circle has retinal_contrasts varying from [70-1022 
79%log_range]. The bottom-darker circle varies from [65-71%log_range]. In the Negative 1023 
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Checkershadow, the central-darker ROI has retinal contrasts varying from [86-1024 
92%log_range]. The top-lighter square varies from [78-85%log_range]. Appearances of 1025 
both GrayROIs in Negative Illusions (Mondrian and Checkershadow) overcompensate 1026 
glare.  1027 
 1028 
Five Contrast Illusion targets, Positive- and Negative B&W Mondrians, and 1029 
Checkershadows are all examples of Glare’s Paradox. Namely, darker GrayROIs 1030 
appearances have more glare light.  These darker ROIs are in local regions with higher-1031 
than-average scene_luminances. The sequence of observations is [greater average 1032 
scene_luminance region$ greater glare $ smaller edge ratios $ higher-slope visual 1033 

response function$darker appearance]. 1034 

Studies of glare in HDR scenes (McCann and Rizzi, 2011) showed extraordinary 1035 
reductions of retinal-dynamic range in maximal-glare scenes. The input scene has [log_ 1036 
range=5.4]; after glare [log_range=1.5]. (McCann and Vonikakis, 2018). Vision’s net 1037 
response function to light on receptors varies with scene content. Vision has limited-range 1038 
(high-slope) visual-response function in high-glare scenes. These darker Glare Paradox 1039 
regions in Lightness Illusions, affected by glare, produced lower-range retinal_contrast, 1040 
and have appearances associated with high-slope visual-response functions. 1041 
Glare’s Paradox exhibits reciprocal properties for GrayROIs that appear lighter. In all 1042 
Contrast and Natural Scene examples: the sequence of observations [lower average 1043 
scene_luminance regions ➜ less glare ➜ larger edge ratios ➜ lower-slope visual response 1044 
function➜lighter appearance].  1045 
Glare’s Paradox is not found in Assimilation segments. Glare adds more glare to segments 1046 
that appear lighter; less light to segments that appear darker. The angular separation 1047 
between max and min are smaller, and local retinal_contrast range is smaller. Glare assists 1048 
Assimilation’s change in appearance. Assimilation Illusions improve with smaller angular 1049 
size, unlike Contrast where observer matches are constant with changes in size. (McCann, 1050 
1978).  1051 
Region-dependent visual response functions could account for neural-spatial image 1052 
processing that tends to cancel glare. Examples of region-dependent image processing 1053 
hardware that mimics vision’s-spatial processing are described in McCann and 1054 
Rizzi,(2011-pp.292-340). In all scene studied here, Contrast and Assimilation show 1055 
distinctly different responses to light. Models of vision must predict both Illusions.  Single 1056 
pixels scene-independent models (sensor, film, Colorimetry) cannot predict either. Multi-1057 
resolution edge-detection techniques (Frankle and McCann, 1983; McCann and Rizzi, 1058 
2011) are needed to address Glare’s Paradox.  1059 
 1060 

4.  Discussion 1061 

Since the 1960s, vision research and digital electronic imaging have produced an 1062 
exponential growth in spatial-image-processing mechanisms.  The work of Edwin Land, 1063 
Fergus Campbell & John Robson, David Hubel & Torsten Wiesel, Gerald Westheimer & 1064 
Suzanne McKee, Semir Zeki, Mark McCourt & Barbara Blakeslee expanded vision 1065 
research by studying complex scenes. Instead of input pixels, they studied how entire 1066 
scenes, or extended scene segments build appearances. 1067 
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This article provides a new Python computer program that calculates the relative contrast 1068 
of light imaged on the human retina. It also describes the analysis of scene_luminance 1069 
input and retinal_contrast retinal response.  1070 
A previous study of glare, used HDR scenes with 1 million to 1 range. (McCann and 1071 
Vonikakis, 2018). The greater the range of luminances, the greater the magnitude of glare 1072 
changes in the darkest regions. However, glare (on a pixel) is sum of all other scene 1073 
pixels ’contributions. The content of the scene, and its local spatial arrangements of 1074 
luminances generate unique glare patterns for every scene. This is because GSF does not 1075 
approach a constant value. As shown in Figure 2 the CIE GSF maintains its high-slope 1076 
decrease at 60° angular separation from the source pixel. 1077 
Contrast+Assimilation targets are the combination of lower-dynamic-range scenes (smaller 1078 
glare magnitudes), and extreme “rest-of-the-scene” contents, limited to Whites and Blacks. 1079 
The million-to-one HDR input range is reduced to 200:1 for these Illusions. This 1080 
combination has a normal range of glare, and a large local glare re-distribution caused by 1081 
max-and min-luminance scene content everywhere in the “rest-of-the-scene”. 1082 
Appearances are the consequence of glare plus neural processing. Glare is a simple optical 1083 
process (rapid decrease in scatter with increase in visual angle). The GSF is convolved 1084 
with all scene_luminances. All of the scene’s content is the co-creator of the spatial pattern 1085 
of receptor responses.  1086 

4.1 Visibility of gradients   1087 
Gradients are an essential sub-topic in vision. In the spatial-frequency domain, they live 1088 
below the peak of the eye’s Modulation Transfer response function. Campbell and 1089 
Robson(1968) transformed vision research in the 1960’s. They initiated decades of 1090 
research in which oscilloscopes became vision research’s instrument of choice. 1091 
Measurements of sinusoidal gratings at different frequencies generated vision models using 1092 
Modulation Transfer Functions. Vision research moved from studying a few pixels to 1093 
complex images and entire scenes. Campbell and Robson’s Contrast Sensitivity Curve was 1094 
a plot of log Sensitivity (1/ sinusoid’s detection threshold) for variable sinusoids (0.1 to 1095 
100 cycles per degree) with a peak at 3 c/degree and a lower slope decrease in sensitivity. 1096 
The data reached a practical lower limit; at 0.1 c/degree one-cycle of sinewave target 1097 
subtends 10°. 1098 
Land and McCann (1971) used gradient threshold to remove them from luminance input 1099 
arrays in early Retinex Lightness models. McCann and colleagues measured the detection 1100 
threshold of gradients. 1101 
 1102 
“At first, we thought that threshold was the range compression mechanism. It stimulated 1103 
our MIT neighbors' interest in the problem. Tom Stockham described homomorphic filters, 1104 
and Horn and Marr described Laplacian operators. These approaches applied 1105 
mathematical functions to the removal of gradients. Our research at Polaroid turned in a 1106 
different direction. If the threshold mimicked our human visual system, our model should 1107 
have exactly the same properties as vision. We needed to measure the rate of change on the 1108 
human retina that was at the threshold of detection.  …We undertook a major effort to 1109 
understand the visibility of gradients. We felt we needed better data on the rate of change 1110 
of radiance on the retina that was at detection threshold to improve our model. It took 10 1111 
years, but we learned that there is no universal rate of change at threshold.” (McCann and 1112 
Rizzi, 2011; p.312) 1113 
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McCann, et al. (1974) measured the detection threshold of linear gradients at 5 different 1115 
viewing distances (range =[4, to 16] feet, and [4.8°,to 1.2°] angle). Despite the 4x change 1116 
in slopes of luminance gradients, detection thresholds were constant at all viewing 1117 
distances. Savoy & McCann(1975) used threshold detection and supra-threshold matching 1118 
to show that below the 3 cycle/degree peak, the visual detection thresholds for sinusoids no 1119 
longer correlated with their spatial frequency.  They found that the number of sinewave 1120 
cycles correlated with visual responses. Hoekstra, et al. (1974) found similar results. All 1121 
that matters is angular size and number of cycles of sinusoid, and the size of the surround 1122 
(McCann & Hall, 1980; McCann, et al. 1978; McCann, 1978; Savoy, 1978, McCann, 1123 
2021b). Although we had proposed this rate-of-change threshold, we could not find 1124 
psychophysical evidence for it as a visual mechanism. The Land and McCann gradient 1125 
threshold, the Stockham spatial frequency filter, the Marr and Horn Laplacian can improve 1126 
some pictures, but they do not have the same properties as vision. They cannot improve all 1127 
pictures.  Gradients are an under-appreciated special spatial challenge to vision research. 1128 
As described above (Results), gradients are present in the retinal images, particularly in 1129 
Lightness Illusions and real Natural Scenes. 1130 
4.2 Glare’s role in Image Quality 1131 
Glare requires attention in quantitative image research. Glare adds a substantial 1132 
modification of scene-content-dependent light on receptors. It is present in all accurate 1133 
quantitative analysis of image data. We realize this every time we measure a scene with a 1134 
well-designed low-glare-optics photometer, and compare its data with data from digital 1135 
cameras [Camera digits≠Meter measurements] (McCann and Rizzi, 2007). Cameras 1136 
capture scene radiances plus glare from camera’s optics. Cameras then add additional 1137 
signal processing. (McCann and Vonikakis, 2017). It is not possible to correct camera’s 1138 
glare without knowing the data we are trying to measure (ISO-9358,1994; McCann and 1139 
Rizzi, 2011-pp.99-112). Glare’s scene-dependent re-distribution of light is difficult to 1140 
observe (McCann, Vonikakis, and Rizzi, 2017). More important, glare redistributes the 1141 
scene’s light in all scenes; it modifies both edges (higher-spatial frequencies) and uniform 1142 
scene segments (lower-spatial frequencies). 1143 

4.3 Neural Spatial Comparisons tend to cancel Glare 1144 
Vision has two powerful spatial transforms of light from scenes: optical, then neural.  1145 
Image quality of a scene_luminance array is degraded by optical veiling glare. However, 1146 
receptor responses are the input to neural-spatial processing. 1147 
The central theme of Lightness Illusions is [Appearance ≠ scene luminance]. Contrast and 1148 
Assimilation Illusions proved, a long time ago, that the “rest-of-the-scene” controls the 1149 
appearance of scene segments. Many Lightness Illusions are designed with perfectly 1150 
uniform segments (something that is rarely found in Natural Scenes). Uniform segments, 1151 
with different luminances create a reasonable, but hidden assumption that these segments 1152 
become an “object” with perceptual consequences. Glare upsets the “object” assumption. 1153 
The uniform scene segments become a complex pattern of nonuniform light on receptors. 1154 
After glare, populations of individual receptor response cannot reliably report scene 1155 
segmentation of “objects” to neurons. Sharp edges have become high-slope gradients. 1156 
Other neural-spatial computations are needed to find and specify the location of objects’ 1157 
edges that are have become gradients (Figure 4). 1158 

In review



  Glare in Illusions 

 

 

 nAll of the non-uniformities in Contrast+Assimilation experiments are not visible. All 1159 
scene segments in these targets appear to be uniform patches on the computer display. 1160 
Appearances are not accurate renditions of a receptor’s response to light. The lesson from 1161 
Illusions is [Apparent Lightness≠scene luminance]. The lesson from this study is [Apparent 1162 
“object” Uniformity ≠ retinal contrast and receptor responses]. 1163 

Vision’s second spatial transformation is [Receptor responses $ ROI Appearance]. A 1164 
comprehensive model of vision requires separate analysis of both independent 1165 
transformations: optical and neural. Understanding appearances generated by 1166 
scene_luminance is made more difficult because Glare’s Paradox shows these two strong 1167 
spatial-transformations tend to cancel each other. All nine Lightness Illusions in this article 1168 
contained pairs of GrayROI segments that showed Glare’s Paradox. Neural spatial 1169 
processing not only cancels the effects of glare, it also overcompensates for it to create 1170 
Glare’s Paradox. (In the the 5 scenes that contained Assimilation Illusions, none of their 1171 
pairs of GrayROI showed Glare’s Paradox.) Vision’s minimization of glare has the 1172 
advantage that we rarely notice glare in everyday life. Neural-spatial comparisons, seen in 1173 
Glare’s Paradox, overcomensates glare. Post-receptor-neural mechanisms emphasize 1174 
edges, and minimizes gradients. 1175 
Neural cancelation of glare creates a challenge for vision research; namely the separation 1176 
of the independent optical effects from later neural effects. The psychophysical 1177 
measurements of the neural effects caused by the “rest-of-the-scene” are severely 1178 
underestimated when glare is assumed to be zero. In the Contrast experiments, the “Gray-1179 
in-White” has more light from glare. But, this “Gray-in-White” scene segment appears 1180 
darker, showing Glare’s Paradox. The neural process compensates for glare’s increased 1181 
luminance, and then overcompensates to make the “Gray-in-White” darker than the lower 1182 
luminance “Gray-in-Black” segments. What we measure as psychophysical change in 1183 
apparent lightness is a small residual difference from the sum of two-substantial lightness 1184 
vectors in opposite directions. We need to know the glare-distorted receptor output to 1185 
measure the magnitude of Contrast’s neural-spatial transformation in the opposite 1186 
direction(McCann and Rizzi, 2011).  1187 
The combination of intraocular glare and Lightness Illusions shows complex-spatial-1188 
image-processing transformations following receptor responses. While optical veiling glare 1189 
distorts the pattern of light from the scene, neural spatial processing cancels glare, and then 1190 
over compensates for it. That is why glare is hard to see. 1191 
Instead of individual receptors, vision uses arrays of receptor responses to locate and 1192 
synthesize sharp edges, and minimize the appearance of gradients. Post-receptor vision 1193 
modifies the many local ranges of retinal_contrast to generate more useful appearances. 1194 
Local neural-spatial processing is needed to compensate for the range of light in Natural 1195 
HDR Scenes, and for glare in normal-range Lightness Illusions.  1196 
4.4  Summary 1197 
This work adds essential facts to research in vision and image quality. Glare 1198 
transformations of scene information are substantial in all of imaging, not just HDR. 1199 

1. While Lightness Illusion’s paradigm of equal stimuli holds in scene photometry, it fails 1200 
for retinal receptor’s quanta catch and receptor resonses. 1201 
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2. Models of neural-spatial processing and human image quality must consider the actual 1202 
spatial array of receptors’ quanta catch.  1203 

3. Nine examples of Glare’s Paradox shows that glare adds more light to GrayROIs with 1204 
darker appearances; and less light to lighter ones. Neural spatial image processing 1205 
cancels and then overcompensates the effects of optical glare. 1206 

4. Glare adds considerable light to Assimilation’s ROI that appear lighter. More research 1207 
studies are needed to determine whether glare alone can predict Assimilation’s 1208 
appearances. Both retinal receptor responses and appearances increase with increases 1209 
in optical glare. 1210 
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CAPTIONS 1361 
 1362 

(Figure 1 goes here) 1363 

 1364 

Figure 1 illustrates the 8 different images used in the Lightness Illusion’s 1365 
construction, calibration of scene luminance input, and retinal contrast calculation of 1366 
the light falling on receptors, followed by the analysis of the effects of glare. The 1367 
image(1) is the Photoshop® digital file (the array of 8-bit values) of a Contrast 1368 
Illusion. Contrast has two Gray Regions-of-Interest (ROI), surrounded by max digit 1369 
on the left, and min digit on the right.  The image(2) is that 8-bit array displayed on 1370 
the Apple XDR powerbook screen. Using a Konica Minolta C100A telephotometer, 1371 
the experimenters measured the scene luminances of light emitted by the screen at 1372 
all digital inputs. Using this calibration, max-White was set to digit 255; the min-1373 
Black to digit 21, so that the range of measured luminances of the display was 1374 
200:1 [log_range=2.3]. The experimenters adjusted the digital values of the 1375 
GrayROIs to be equal, and to optimize the Contrast Illusion’s effects on Grays’ 1376 
appearances. The image(3) made by the Python program, is a digital file that uses 1377 
photometer measurements, and Photoshop’s map to make the <scene_luminance> 1378 
(64-bit per pixel double precision flotating point) file. This file is the Scene that is 1379 
convolved with the CIE GSF to calculate <retinal_contrast> of the pattern of light on 1380 
the Retina (image 4). These 64-bit double precision arrays, images(3) and (4), 1381 
cannot be accurately rendered on a display at full precision. The next two rows 1382 
show the four images used to analyze and visualize the effects of glare. Images (5) 1383 
and (6) are converted from 64-bit double precision data to 8-bit log, scaled to the 1384 
Scene’s [log_range=2.3]. These images are used for numerical analysis of pixels’ 1385 
values, and their plots of Scene and Retina. The bottom-row uses Pseudocolor 1386 
renditions to visualize the spatial distribution of light on the retina. Many glare-1387 
generated gradients in retinal contrast are invisible in <grayscale>. Pseudocolor 1388 
rendering makes the spatial patterns of these gradients highly visible. Each 1389 
Lightness Illusion uses these 8 different images to create the Illusion; calibrate its 1390 
Scene luminances; calculate the light on the Retina; and quantitatively analyze 1391 
glare’s re-distribution of light. 1392 

 1393 

(Figure 2 goes here) 1394 

Figure 2 Glare Spread Function plotted on log-log axes. Note the extreme ranges 1395 
of these axes. The horizontal visual-angle axis covers (1 minute to 60°). The 1396 
vertical axis plots the decrease in glare as the function of the angular separation 1397 
between donor pixel and receiving pixels. It covers 8 log10 units (150,000 to 0.005). 1398 
Despite its range, it does not approach a constant asymptote. The glare on each 1399 
receiving pixel is the unique sum of contrition of all the other scene pixels. Glare is 1400 
a scene-content-dependent transformation of scene luminances. 1401 

 1402 
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Figure 3 - Required data for calculating <retinal_contrast>, and analyzing the 1403 
effects of glare. Columns illustrates the sequential steps in 1404 
<test_retinal_contrast.py>: Image on Display; GSF Convolution; Grayscale and 1405 
Pseudocolor Analysis. Rows identify the Files; Scenes; and Retina.  Files-(top-row) 1406 
identifies the names, specifications, and precisions at each step. The terms 1407 
nonlinear, linear, and log refer to plots of cd/m2 vs. digit value in the images. The 1408 
measured luminances from the display were a nonlinear function of Photoshop 1409 
digits. The program’s calibration step made <scene_luminance> linear for the 1410 
convolution. The analysis of glare used [log_range=2.3].  Scene-(middle row) 1411 
illustrates the appearance of the image on the display in the first column; the CIE 1412 
GSF convolution in the second; the normalized cd/m2 input image in the third; and 1413 
the Pseudocolor visuization of the uniform luminance patches in the fourth column. 1414 
Note the Color-bar on the right side of this image scene. It plots all 256 1415 
pseudocolor samples and identifies the [log_range] of the image. Max luminance is 1416 
White with [scene_luminance_log = 0.0] while Min luminance is Black with 1417 
[scene_luminance_log = -2.3]. This Color-bar links the RGB digit vaues to log 1418 
luminances.  1419 

Note that all Gray pixels in Scene(Pseudocolor) have the same Color-bar 1420 
visualization (green RGB triplet [192, 255, 64]). That triplet is the Pseudocolor 1421 
output for all grayscale digits in the scene from digit 194 to 197, that calibrates to a 1422 
log scene luminances range between -0.52  and -0.55. Each Color-band is 1423 
traceable to log luminance cd/m2 values. 1424 

The second column in Retina-(bottom-row) shows a Pseudocolor 3D plot of 1425 
convolution kernel for the CIE GSF. The third column shows the grayscale log 1426 
retinal contrast image used to provide calibrated data for plots, and numerical 1427 
analysis of <retinal_contrast> image segments.  The fourth colmn shows the 1428 
Pseudocolor image used for visual inspection of the spatial pattern of gradients. 1429 
Gradients are not visible in grayscale images, but are clearly observed in 1430 
Pseudocolor. Note Contrast’s large Black surround for the ROI in the third column. 1431 
Compare it with the Pseudocolor’s visualization of in the fouth column. 1432 
Peudocolor’s bands of colors reveal the magnitude, and complexity of glare’s 1433 
gradients. 1434 
 1435 
Figure 4   Illustrations of two different Pseudocolor Look Up Tables (LUT). The 1436 
<cmap.LUT> (top-row) emphasizes the order of lightness appearances. The left 1437 
panel shows a 2049 by 2049 pixel background (min-luminance) with a centered 1438 
601 pixel (max-luminance) square. The left panel is the input file 1439 
<scene_luminance_log-mapped> using <grayscale.LUT>. The middle panel is 1440 
<retinal_contrast_log_mapped> showing the effects of glare. The right applies 1441 
<cmap.LUT>, and shows its color map in its Color-bar on the right. This is used to 1442 
analyze most of the scenes in this paper. Its color map is encoded in the 1443 
<retinal_contrast.py> program. It used 64 different color bands. 1444 
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Figure 4(bottom-row) shows a different LUT, that is implemented in a different 1445 
way. It has four times more color bands, for better visuaiztion of low-slope 1446 
gradients. The bottom-left panel shows all 256 different colors in the [3-3-2 1447 
RGB.LUT] color map, from Min Black [0] to Max Yellow [255]. Its color index 1448 
emphasizes the visibility of gradients. The bottom-middle panel  applies the [3-3-2 1449 
RGB.LUT] to the retinal contrast file. Note the differences in visualization between 1450 
[cmap] and [3-3-2 RGB.LUT]. The [cmap] rendition preserves the sense of the 1451 
Lightness separation beween Max and Min regions. The [3-3-2 RGB] rendition 1452 
does not. However, it reveals the presence of gradient throughout the large Min 1453 
region.  1454 

Using [3-3-2 RGB LUT] makes it difficult to find the location of the highly visible 1455 
edge between the Max center and the Min surround. The bottom-right panel 1456 
identifies the location of that Max/Min input-edge in <3-3-2 RGB] using the 1457 
Superposition of four quarter-image sections. The Superposition contains:  1458 

1. top-left quadrant is log scene luminance;  1459 

2. top-right quadrant is log retinal contrast);  1460 

3. bottom-right is background-alone using [3-3-2 RGB]; 1461 

4. bottom-left quadrant is square-alone using [3-3-2 RGB]; 1462 

A thin red band locates the Max/Min boundary, that became a gradient after glare. 1463 
 1464 
 1465 
Figure 5 - (A, B, C, D) Four Contrast+Assimilation targets: Scene (top-row) 1466 
Displayed images on the computer screen <map.tif>; Retina (middle-row) 1467 
calculated pattern of light on receptors <retinal_contrast_log_grayscale>; 1468 
Histograms (bottom-row) linear (black fill) and log (blue fill) histograms of 1469 
<retinal_contrast_log_grayscale>. Above the horizontal axis the color bar 1470 
illustrates [cmap.LUT] pseudocolor mapping. All Figure 5 renditions used 1471 
parameters [log_range=2.3], [padding=replicate]. 1472 

1473 
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Figure 6 Pseudocolor renditions of Figure 5(ABCD) and [cmap.LUT] color index 1474 
map(E). Scene (top-row) <scene_luminance_log_cmap> images [log_range=2.3].  1475 
Retina (middle-row) calculated <retinal_contrast _log _cmap> images. Grays only 1476 
(bottom-row) copies of Retina are covered by a light-blue mask over all the max- 1477 
and min-luminances. This leaves Grays only pixels in all four Illusions. Enlarging the 1478 
Grays Only image illustrated glare’s distortions of uniformity in GrayROIs. Column 1479 
(E) adds an enlarged color-bar showing the Pseudocolor conversion from digits to 1480 
color patches. The range of digits is [0, 255]; the range of log_retinal_contrast is [-1481 
2.3, 0]. The black vertical lines A, B, C, D plot the ranges of <log _retinal_contrast> 1482 
of all Black pixels (scene_luminance=2.2 cd/m2) in the each Illusion. The horizontal 1483 
line in each range is its mean log _retinal_contrast value. Every Black glare-1484 
receiving pixel value varies with the angular distances between itself and all the 1485 
donating White and Gray pixels. The changes in spatial position of these scene 1486 
elements causes the dramatic variability of Black retinal contrast values. 1487 
Nevertheless, they have identical rich black appearances on the display (Figure 5-1488 
Scene ABCD). 1489 

 1490 
 1491 
 1492 

Figure 7 Contrast and Todorovic Assimilation targets. (A) Scene: Image  [log_range 1493 
= 2.3] displayed on computer screen (top-half is Contrast; bottom-half is 1494 
Assimilation). (B) Horizontal log luminance plots through the centers of the circles 1495 
and crosses. Horizontal log scene luminances plots are identical in top Contrast and 1496 
bottom Assimilation (dashed black line). Log retinal contrasts are different: circles 1497 
(blue line at blue arrows); crosses (red line at red arrows). (C) Retina: Calculated 1498 
log retinal contrast using [padding=replicate] and Pseudocolor [3-3-2RGB LUT], 1499 
[log_range= 2.3]. (D) Enlargements of Retina Assimilation crosses: Gray-in-Gray 1500 
surround (left); Gray-in-White surround (middle); Gray-in-Black surround (right). The 1501 
3-3-2 RGB LUT reveals equal luminance regions in Retina. Recall that the Scene is 1502 
made up of only 4 uniform luminance (White, Gray cycles and crosses, Black, and 1503 
background). Glare transforms Scene uniformities in very complex nonuniform 1504 
patterns on the Retina. Blacks shows the largest glare distortions.These luminance 1505 
distortions patterns are invisible when viewing the display in Figure 7(A). 1506 

 1507 
 1508 
Figure 8 Histograms of all Gray pixels in Contrast (circles) and Todovoric 1509 
Assimilation (crosses) in different backgrounds. Plots of retinal_contrast_log 1510 
scaled to log_range= [-2.3,0.0] vs. pixel count. The vertical axis is a linear count 1511 
(256 bins). Each histogram is normalized to its own peak. Gray-in-Black surrounds 1512 
are green; Gray-in-gray are blue; Gray-in-White are red. In Assimilation crosses, 1513 
glare adds more light to Gray segments that appear lighter in White, and the least 1514 
light to Grays that appear darker in Blacks (Figure 7A). The opposite happens in 1515 
the Contrast’s circles, showing Glare’s Paradox. 1516 

 1517 
Figure 9 illustration of Land’s B&W Mondrian. Edwin Land’s 1967 demonstration 1518 
of his Black and White Mondrian (Ives Medal Address to the Optical Society of 1519 
America). 1520 
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 1521 
Figure 10 Land’s B&W Mondrian. Scene (top-row) Mondrian on display; 1522 
scene_luminance _log_grayscale, and scene_luminance_log_cmap.  Retina 1523 
(bottom-row) retinal_contrast using same LUTs. All Figure 11 calculations used 1524 
parameters [log_range = 2.3], [padding=replicate]. 1525 
 1526 
Figure 11 Checkershadow Illusion - Scene (top-row) reproduces the image on the 1527 
display; scene_luminance_log_grayscale; and log_cmap. Retina (bottom-row) 1528 
retinal_contrast using the same mapping. All Figure 11 calculations used 1529 
parameters: pseudocolor [cmap.LUT], [padding=replicate]. The first three columns 1530 
used [log_range=2.3]. The extended White surround for the Tower and 1531 
Checkerboard raised the mean retinal contrast values and reduced the total 1532 
[log_range=1.2]. The final column on the right used [log_range=1.2] to get a 1533 
clearer rendition of retinal_contrast values in this illusion. 1534 
 1535 
 1536 
Figure 12 Glare’s Paradox-Scene: (top-row) shows Appearances of: Contrast, 1537 
Mondrian [positive and negative], Checkershadow [positive and negative]. 1538 
Retina:(bottom-row) pseudocolor rendering using [cmap.LUT]. On the far right is a 1539 
plot retinal contrast digit value [0,255] vs. pseudocolor samples used to identify 1540 
retinal _contrast_ log values. In total, this article calculates the retinal_contrast 1541 
image for 9 Lightness illusion scenes. All 9 scenes contained GrayROI segments 1542 
that  showed Glare’s Paradox. In the the 5 scenes that contained Assimimilation 1543 
Illusions, none of their pairs of GrayROI showed Glare’s Paradox.   1544 In review
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