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Abstract
There are two very different  kinds of  color constancy. One 

kind studies the ability of humans to be insensitive to  the spectral 
composition of  scene illumination. The second studies computer 
vision techniques for calculating the surface reflectances of  objects 
in  variable illumination. Camera-measured chromaticity has been 
used as a tool in computer vision scene analysis. This  paper 
measures the ColorChecker test target in uniform illumination to 
verify the accuracy of scene capture. We identify the limitations of 
sRGB camera standards, the dynamic range limits of  RAW  scene 
captures, and the presence of camera veiling glare in  areas darker 
than middle gray. Measurements of scene radiances and 
chromaticities with spot meters are much more accurate than 
camera capture due to scene-dependent veiling glare. Camera 
capture data must be verified by calibration.

Introduction 
Studies of color constancy in complex scenes were originally 

done with  simple images that allowed radiometric measurements 
of all image segments  in the field of view. (Land, 1964: Land & 
McCann, 1971)  McCann , McKee and Taylor (1976) introduced 
the field of Computational Color Constancy, using digital input 
arrays of 20 by  24 pixels. This  size seems ridiculously small now, 
but it was very large for the time. They showed that:

• 1. Observer color constancy matches correlated with Scaled 
Integrated Reflectance of Mondrian areas calculated using an 
algorithm that made spatial comparisons. 

• 2. The subtle changes in departures from perfect constancy 
were modeled well by cone crosstalk in the spatial 
comparisons.

As digital  imaging advanced it  became possible to 
automatically capture arrays of millions of digital  values from 
complex scenes. As well, Computational Color Constancy has  split 
into two distinct domains:

• Human Color Constancy (HCC) studies the ability of humans 
to be insensitive to the spectral composition of scene 
illumination. Its goal is to calculate the appearance of scene 
segments given only accurate radiances from each segment. 
No additional information, such as the radiance of the 
illumination is required, as in CIECAM models.  The ground 
truth of HCC is the pyschophysical  measurement of the 
appearance of each image segment.

• Computer Vision Color Constancy (CVCC) studies 
techniques for estimating the surface reflectance of objects in 
variable illumination. Its goal is to separate the reflectance 
and illumination components from the input array of scene 
radiances. If successful, these algorithms use the information 
from the entire scene to find an object's surface reflectance. 
The ground truth of CVCC is the physical measurement of 
the surface reflectance of each image segment.

Experiments measuring the human appearance of constant 
surface reflectances show considerable variation depending on 

scene content.  Innumerable examples include: simultaneous 
contrast, color assimilation, and 3-D Mondrians  (Albers, 1962; 
Parraman, et al., 2009, 2010). Computer vision's goal is to identify 
the surface, regardless of its appearance to humans. Thus, the two 
distinct kinds of Color Constancy do not share the same ground 
truth. They either have different  fundamental mechanisms, or they 
have very different implementations. If they use the same 
underlying mechanism, then that mechanism would have to 
compute very different results.  A single reflectance surface is seen 
in  HCC to vary considerably with scene content, while the 
challenge to CVCC is to estimate the same constant reflectance in 
all scene contents.

Image capture
A common problem in both HCC and CVCC is the need for 

accurate data of scene radiances as the input for the models. The 
early spotmeter technique to measure simple targets was replaced 
by  digital scans of high-dynamic-range film images (McCann, 
1988); and more recently by multiple exposures using electronic 
imaging. Papers  by Debevec and Malik (1997), Mitsunaga and 
Nayar (1999), Robertson et al. (2003), and Grossberg  and Nayar 
(2004) propose calibration methods for standard digital images. 
Funt & Shi  (2010) describe the advantages of using DCRAW 
software to extract RAW camera data that is linear and closer to 
the camera sensor's  response. Xiong et  al. (2012) and Kim et al. 
(2012) describe techniques for converting standard images to 
RAW for further processing. The common thread is that these 
papers attempt to remove the camera response functions from its 
digital data to measure accurate scene radiances.

Surface reflectance by first finding illumination
Helmholtz (1924) introduced the idea that constancy could be 

explained by finding the illumination first. If that were 
accomplished by some means, the quanta catch of the receptors 
divided by the quanta catch from the illumination equals a measure 
of surface reflectance. For Human Color Constancy (HCC) that 
approach could provide an alternative partial  explanation of 
McCann et  al.(1976), but not subsequent vision measurements. 
(McCann, 2012, chapter 27.5) For CVCC, that approach works 
within  strict bounds  imposed on the illumination. Obviously, it can 
work perfectly in illumination that is both spatially and spectrally 
uniform. Under these conditions there is a singular description of 
illumination falling on all objects in the scene. 

Real scenes  do not have uniform illumination. One CVCC 
approach assumes that the illumination is spectrally uniform, 
namely the illuminant has only a single spectrum falling on all 
objects, but  variable in intensity. In such uniform spectral 
illuminants we can use chromaticity - a measure of spectral 
composition - to describe any intensity of that spectra. However, if 
the scene contains more than one spectral  illuminant, such as 
sunlight  and skylight, or colored reflections from a colored surface, 



then a single chromaticity value does not describe the illuminant 
on all areas.

Chromaticity as a Constancy Tool
Chromaticity is a tool  used frequently  in Computer Vision 

Color Constancy (Funt et  al.1998;  Finlayson et al. 2001; Ebner, 
2007; Yao, 2008; Funt & Shi 2010; Yang et al. 2011;  Gevers et al. 
2012; Jiang et al. 2012; Ratnasingam et al. 2012)  

Chromaticity is the projection of the three-dimensional color 
solid onto a plane defined by the RGB components. Position  in the 
plane, defined by r,g are calculated

  

 

r = R / (R +G + B)
g = G / (R +G + B)

where R, G, B are the digital color values from the camera image. 
These chromaticity values are specific to the camera system and 
file format. Chromaticity is the ratio involving a sum. That requires 
strict linearity of input information. Camera chromaticity should 
not be confused with colorimetric chromaticities (x, y) that 
represent camera independent transforms of color-matching 
functions X,Y,Z.  Further, we will not assume that all cameras have 
strict compliance to sRGB standards.

Color Constancy in Color Photography
Human Color Constancy (HCC) is a critical part of the 

success of color photography. HCC is  extremely insensitive to the 
chromaticity values  produced by photographic reproductions. 
Successful reproductions show a very large range of shifts  in 
chromaticity from a single surface reflectance. This is seen in the 
standard photographs of the high-chroma BGRYMC squares in the 
ColorChecker target using multiple exposures.(Figure 1, left)  A 
major limitation of camera chromaticity constancy in good color 
photography is the use of color masking. It has been in use since 
patented in 1889. (Albert, 1889; Friedman, 1944; Spencer, 1966; 
Yule, 1977)

Figure 1 (left) Composite of segments of 12 different jpeg 
images of BGRYMC ColorChecker squares made with 
different exposures; (center) camera chromaticity estimates 
using RGB film separations without color masking; (right) 
digital camera chromaticities measurements from left jpeg 
images with color masking.

Reproducing color using Maxwell 's (1964) color 
photographic technique shown at the Royal Institution in 1861 (3 
B&W spectral  separations) has  no color masking. Three black and 
white photographs scanned and converted to linear (slope 1.0) 
RGB digital records have constant chromaticities with variations in 
exposure. Figure 1(center) plots the chromaticities from such films 
for BGRYMC ColorChecker squares. These chromaticities are 
constant with variable film exposures. The reason for constant 

chromaticities is  that this system recreates the captured scene 
information, with output equal to input.  

The problem is that  color pictures without color masking do 
not look good. Color masking is the principle tool for "improving" 
scene capture information. Increasing chroma improves observer 
preference evaluations, and sells more cameras. It expands the 
color separation information to fill the viewing medias's color 
gamut using nonlinear processing. Color negative films and 
standard digital cameras have built in color masking.

The chroma r,g values plotted in Figure 1 (right) were 
calculated from the RGB separation values read by ImageJ from 
standard images (left). The photograph segments on the left are 
all appropriate renditions for human vision. Other than being a 
little too light, or a little too dark, they work well to do the task 
of reproducing the scene for humans. The fact that these 
chromaticities from multiple exposures show such extreme 
variations is of little concern to humans. That also means that 
chromaticity alone is of little use in predicting color appearance. 
However if accurate, it is highly useful in Computer Vision 
Color Constancy.

RAW and RAW* images
RAW format  images were introduced to allow photographers 

more control of their image rendering. They provide the 
photographer the ability to control  in software the many automatic 
image processing operations usually performed in camera 
firmware. The RAW format stores images that are much closer to 
linear records of the light falling on the camera sensor. There is no 
international standard for RAW. Each company provides a different 
software package that gives the photographer more control, but 
that does not mean that all RAW images are linear. 

A better digital camera approach to measure scene radiances 
is  to use RAW image data that is verified to be linear. Funt  and Shi 
(2010) used DCRAW freeware library to read camera RAW and 
convert it to  a black and white image that is  as close as possible to 
the sensor's response. It is a single image that  contains the different 
sensor responses to the Bayer pattern mosaic. 

We used the (LibRaw 2013) Image Decoder Library, which is 
built on DCRAW. More specifically, we used the “unprocessed” 
function of LibRaw which outputs the unprocessed data of the 
RAW file, without applying any processing such as demosaicing, 
denoising, white balance, gamma modification, enhancement, 
compression, or min/max normalization. This results in an image 
with  visible Bayer pattern and not normalized R, G and B 
responses (G>R>B). For this reason, we used separate calibration 
RGB LUTs to scale and linearize the sensor responses in order to 
remove any tone scale nonlinearities, and attain the same output 
response for achromatic patches. We refer to the output  of this 
process as  RAW*, described in McCann and Vonikakis (2012). All 
images referred to as RAW* have no outlier pixels, because we 
experimentally verified linearity. 

Limitations of Camera Chromaticity 
We saw above in Figure 1 that  standard digital  photographs, 

representing preferred reproductions, are highly  nonlinear and 
cannot be used for accurate illuminant estimation in CVCC 
algorithms. Nevertheless, camera color-balance algorithms can use 
this  data successfully. They process images expecting further 
processing by human observers' color constancy.



Figure 2  compares the use of color spaces of standard  image 
formats with a linear RAW format. Figure 2 (left) shows a 3-D plot 
of RGB digits from the best standard  image of the ColorChecker 
target with color masking. The color squares are plotted in a color 
cube (256 levels per axis). The digits fill  much of the color space 
because of color balance (placement of achromatics along the cube 
diagonal) and color masking  (amplification of chroma 
information). 

Figure 2  (right) shows RGB digits in the best  exposed RAW 
photograph. It  has more digits (14 bit, scaled to match jpeg). We 
measured the range of accurate scene data using a Canon 60D 
digital camera with an EF-S17-85mm zoom lens. The RAW data 
uses a small fraction of the color space volume. It fills  much of the 
achromatic range, but is very limited in chroma.

Figure 2 compares the use of color space standard  image 
formats (jpeg) and linear RAW formats 

There are many algorithms that calculate statistics of 
spectral values of illumination using camera chromaticity values 
from the scene. Because the range of possible linear camera 
chromaticities is so small compared to luminance, the 
requirement for accuracy of these measurements is critical.  A lot 
depends on the intended discrimination of the CVCC algorithm. 
If the goal is to differentiate hues (red vs. cyan) accuracy is less 
important. However, if the goal is to differentiate individual 
chips in the Munsell  Book of Color, then great precision is 
required. Although desirable, full spectral correlations are not 
usually attempted in CVCC because most digital cameras have 
broad-band Bayer pattern RGB sensors. As well, many papers 
use short cuts of studying scene averages, or database 
correlations, rather than measuring the accuracy of individual 
areas to determine the precision of color constancy algorithms. 
Sometimes papers look for correlations between average 
calculated chromaticities and average scene chromaticities.

The CVCC goal is to calculate measured surface values and 
requires a calculated physical number, independent of the human 
observer. The analysis of CVCC algorithms needs to carefully 
avoid visual inspection of pictures of scenes processed by an 
algorithm. Visual inspection incorporates human color-constancy 
in the analysis. We cannot judge the contribution of the CVCC 
algorithm separate from the HCC contribution.  

Any CVCC prediction that involves an average, or 
statistical analysis of chromaticity values should restrict the 
sample set to accurate chromaticity values (outlier free data). Our 
current study shows that the range of accurate chromaticity 
values is much smaller than we had first thought.

Calibrated RAW digits
We made a series of 48 exposures of a Munsell ColorChecker 

using a Canon 60D camera (IS0 100) with an EF -S17- 85mm lens. 
We turned off all  automatic firmware. The exposures covered  a 
range of 16 stops with 1/3 stop increments. We used ImageJ to 
measure the RAW RGB values in the different areas in the Bayer 
pattern black and white image from DCRAW. 

Figure 3 plots the RAW RGB digits vs log exposure.

The maximum RAW digital value was 13,584 out of a 
possible 16,384 addresses in a 14-bit digital value. We found the 
minimum RAW value to be 2049. This pedestal, or black floor 
limit, is the lowest value found in the camera response. This value 
is  also found when one takes a digital image in a light-free dark 
room. Thus, this camera used a range 11,034 (13,584-2,049) digits 
for all three color separations. This is 70% of the 14-bit  range of 
digits. 

We calculated the relative exposure for each achromatic 
ColorChecker square using the relative Y reflectance values 
(Pascal, 2002) and the relative exposure time with constant 
aperture. The plots  of log relative exposure vs. RGB camera digit 
are shown in Figure 3. These 11,034 camera digits represent the 
exposure G range of 2,951:1 (3.5 log  units);  the B range of 
5,012:1(3.7 log units); and R range of 6,310:1 (3.8 log units).

We found good fit of the RGB data using the following linear 
functions:

when e is the % maximum exposure at  the camera's maximum 
saturation digital value, in this case 13,584.

In figure 4, the green line plots the entire usable range 
between 13,584 and 2049. The red dashed  line plots the G 
separation range used by the achromatic squares in the 
ColorChecker target, with icons for white, middle gray (G3) and 
black.

This analysis uses the achromatic squares in uniform 
illumination. This has a range of luminance of 29:1. In the case of 
this  Best  RAW  exposure, there are 896 digits available between the 
ColorChecker White and max saturation value. As well, there are 
274 digits available between the ColorChecker black and the 
minimum black level pedestal. Together they are 8% of the 14-bit 
data range. The unused digits  above CCwhite are needed to render 
nonuniform illumination; e.g. highlights and  light  sources in  real 
scenes. The unused digits  below CCblack  are needed for shadows.  
Both are needed to calculate the color balance of the image, since 

 

RAWG = 3.908 * e + 2049
RAWB = 2.301* e + 2049
RAWR = 1.828 * e + 2049



RAW digit values are recorded before the color balancing camera 
firmware. RAW digits for a particular scene are independent of the 
color balance settings of the camera. Only 10% of the usable range 
of digits is  used to  meet the many different challenges of real-scene 
dynamic range image capture. With the exception of photographs 
of a foggy day, the ColorChecker target in  uniform spatial and 
spectral illumination is  one of the smallest-range scenes 
encountered in camera capture.

Fig 4 plots the % usable RAW sensor data vs. digit.

ColorChecker Chromaticities minus Pedestal
We can use this ideal range shown in Figures 4 to calculate 

chromaticity r,g from RAW* camera digits. Here we subtract the 
dark minimum pedestal value from the stored digital camera 
response If the additive constant black level is not  subtracted, then 
chromaticities vary with exposure, meaning that these r,g values 
are inappropriate for CVCC algorithms. This pedestal subtraction 
is  standard practice among camera designers, but it is  not always 
discussed in CVCC papers using camera chromaticity. 

Figure 5 shows that camera chromaticities can correlate with 
surface reflectance using linear RAW* camera digits.

LibRaw Image Decoder Library has a switch (called "black 
level subtraction") that, when set, does something similar. Under 
some conditions with some cameras, RAW digits can have the 
pedestal included.

The consequence of subtracting 2049 from RAW camera 
digits  is to amplify the range of the digital values. The G, B, R 
digital ranges increase from 7:1(13,584/2,049) to 11,384:1.

Using the ColorChecker test target we found excellent 
linearity over a range of exposures. In this ideal range, the camera 
response chromaticities r,g are calculated from RAW camera digits 
with dark minimum value pedestal subtracted. (Figure 5)

Unlike the results found in Figure 1 (right), chromaticities 
measured from RAW* images (Figure 5) have constant 
chromaticity with different camera exposures.

Calibrated Scene Digits
Having confirmed our expectation that RAW* camera data 

can generate constant chromaticities with variable exposures in 
uniform spatial  and chromatic illumination, we can turn our 
attention to the effects of range of accurate chromaticities in real 
scenes. Figure 6 plots the G RAW camera digits from multiple 
exposures for each of the six achromatic ColorChecker squares.[W. 
G1, G2, G3(middle gray), G4, and K]

Figure 6. RAW G camera digits with variable exposure for 
the six achromatic squares in the ColorChecker. The graph's 
gray backgrounds identify exposures in which part of the 
scene has a nonlinear response. The graph's white 
background identifies the 1.8 log unit range of sensor 
exposure in which the entire sensor response is linear.

We see the black reflectance square (K) vary between max 
and min digits over a range of exposures of 3.5 log units. Each of 
the gray squares has a similar range that is displaced by the range 
of reflectance values. The window for all 6 gray squares is  only 1.8 
log units.  Above and below that range the errors introduced by 
both  max saturation, and minimum black level disrupts linearity.  
As soon as we reach these min-max limits, we begin to alter the 
average values of the scene, and their average chromaticities  in 
CVCC analysis.

We saw above that the camera dynamic ranges were greater 
for B and for R response functions, but for any chromaticity 
measurements all three components GRAW, BRAW and RRAW 
must be strictly linear. 

Review
If we review the calibration experiments so far we have 

measured that:
• Ordinary camera images that look good have large amounts 

of color masking that increase the chroma of all non-
achromatic stimuli. 

• Color masking is a chromatic amplification that distorts a 
color sample's reflectance chromaticity.

• A manufacturer's RAW software performs similar chromatic 
amplifications of scene data and cannot be used to measure 
scene chromaticities.



• RAW extracting libraries such as DCRAW or LibRaw 
provide the closest access to the achromatic sensor response 
as filtered by Bayer pattern color filters.

• Between saturation at very high exposures, and the noise 
pedestal for low exposures, the camera's response is linear.

• The RAW R, G, B responses have different slopes 
depending on the spectral content of the light.(Figure 3) 

• The linear RAW R, G, B responses for chromaticity 
measurements are necessary, but not sufficient. The RGB 
response functions need to be color balanced, so that 
achromatic scene objects have equal RAW R, G, B digits.
(RAW* calibration procedure - (McCann and Vonikakis 
2012)) 

• Any camera digits in each of the RAW R,G,B images that 
reach min or max linear limits are outliers and they reduce 
the number of pixels that are usable camera chromaticity 
responses.

Under the above conditions with DCRAW/LibRaw data 
camera chromaticities are proportional to scene chromaticities and 
can be used for calculating  the average illumination and 
performing image analysis.  For the low-range ColorChecker 
scene, the range of exposures that is  free of outliers is limited to 
total 1.8 log units in the Canon 60D.

Camera Glare
The remaining task is to test for veiling glare in the camera. 

McCann and Rizzi (2007) measured that scene content limited the 
dynamic range of cameras. They used an achromatic transparent 
target with a dynamic range of 18,619: 1.  They found that glare 
from the entire scene added to the desired scene radiances. The 
effect of glare cannot  be removed because it is  the sum of all the 
very small amounts of scattered light from every pixel. The 
amount of glare is  dependent on that  pixel's intensity and distance 
from each scattering pixel. The camera green digit  Gc is the sum 
of scene radiance Gs and veiling glare v. It is the sum of glare 
from all other pixels and light  from outside the camera sensors 
field of view. 

where x is the maximum horizontal pixel  location address, and y is 
the maximum vertical pixel  location address. Typically the product 
of x*y  equals  millions of pixels. Veiling glare is the scene radiance 
Gs convolved with the glare spread function (GSF) for every other 
scene pixel in the camera's  field of view. Rizzi & McCann, 2009). 
Glare is  a function of the distance (d) between the location (xi,yi) 
of Gs.  L represents the glare light that falls on the camera lens 
from light sources  outside the camera's field of view.  The forward 
calculation using all the accurate scene radiances and the camera's 
glare spread function can calculate the resulting image with glare 
as long as we know all the scene radiances at each pixel without 
glare.  That is the easy part. 

The reverse process is not possible. If we need to calculate the 
accurate radiance Gs for a scene pixel from the camera radiance 
digits, we have to accurately calculate the values of millions of 
separate vx,y contributions from every pixel, and the glare L from 
light falling on the lens  from outside the camera's field of view. No 

  

Gc = Gs + v

v = f (Gs
1,1

x,y

∑ ,d) + L

one has shown a real solution to this problem. Optical experts 
agree that this inverse calculation is not possible, as  stated 
explicitly in the ISO standard for measuring veiling glare. (ISO 
9358, 1994) As yet, claims of approximate solutions do not stand 
up to optical imaging standards.

Testing for Glare in Ordinary Photos
The following experiments  measure the influence of veiling 

glare in  three different sets of ordinary photographs. Our 
experiments used the ColorChecker achromatic papers that have a 
radiance range of only 29:1 in uniform illumination.

Beach Scene
To illustrate the effect of scene content we made RAW* G 

images of four scenes with different scene content. In all cases the 
lens was  shielded from the sun, and the camera pointed away from 
the sun. The pictures were made with a different camera (Canon 
D60) with subtracted  dark pedestal. We used a Canon EF 50 mm F/
1.8 II primary lens  having only five optical  elements, so as to 
minimize glare. The scenes  photographed, shown in Figure 7 
bottom were:

• ColorChecker inside an automobile shaded by trees
• Closeup of the Color Checker on a beach
• Same scene - greater distance (1/9 area)
• Same scene taken much further back (1/144 area).

Figure 7 (top) Ratio of camera estimate/actual vs. % max 
luminance;(bottom) The scenes: CC on black, and on the a 
beach at different distances.

The black line in Figure 7 plots  the meter readings of the 
reflectance of the six achromatic square along the bottom of the 
ColorChecker. The horizontal axis is % maximum luminance read 
by  a Konica Minolta C100 meter for those six squares.Our meter 
readings match the values reported by Pascal (2003). The vertical 
axis is the ratio of camera-estimated  reflectance to actual 
reflectance. Theses estimates  were made from RAW*G data 
known to be in the linear camera response region.

Photo  1441 (Figure7, left) taken inside an automobile on a 
dark background shows good correlation for five achromatic 



squares. The camera reflectance estimate for black is 1.75 times 
actual. The beach scenes (1456, 1459, & 1481) showed larger 
errors for all  squares, reaching 2.85 overestimate for black 
reflectance in Photo 1481. The beach scenes  show overestimates of 
middle-gray square greater than 1.25 times. Scene content 
introduces substantial errors due to veiling glare even though the 
scene is low-contrast and captured in uniform illumination. A 
beach scene has a distribution of image luminance values that  are 
nearly all at the maximum luminance value, thus providing more 
scattered light  in the camera's  image plane. The ColorChecker in a 
dark environment has less veiling glare and smaller errors from 
scene content. 

Uniform illumination in the laboratory
We also made four sets of exposures with a Canon 60D 

camera varying scene content. They are:
• Wall [Center]: a ColorChecker (CC) target in uniform 

daylight on a white wall on all sides. [Scene range= 29:1]
• Wall [Upper left]: We moved the ColorChecker so that it 

was in the upper left of the camera's field of view. The 
Black square was in the center of the field of view.

• Wall [Lower right]: We moved the ColorChecker so that it 
was in the lower right of the Camera's field of view. The 
Black square was in the corner of the field of view.

• Window: a CC target in uniform reflected light on a 
window diffuser that has 3 stops (0.8 log units) more 
luminance than the white in the CC. The bright window 
background is out of the camera's field of view. 

   [Scene range= 249:1; Camera field of view range 29:1]

Figure 8 plots the data for these four scenes  from G RAW* 
camera digits (with verified linearity) after the dark-noise pedestal 
was removed. The horizontal axis is  the % maximum luminance in 
the camera's field of view. We analyzed only the 6 achromatic 
grayscale squares because we have measurements of reflectance 
independent of camera's  spectral sensitivity.(Pascal, 2003) Two 
additional sets of spotmeter measurements confirmed the Pascal 
data. Accurate camera estimates of scene reflectance fall  on the 
black line with a ratio of 1.0.

The camera estimate of scene reflectance was the G RAW* 
camera digit divided by the camera digit value of the white square. 
The graph's vertical  axis plots the ratio of the camera-estimated to 
actual reflectance. Figure 8 shows that scene content, in and out of 
the camera's field of view, influences camera estimates of scene 
reflectances. 

The three wall pictures show that camera estimates of 
reflectance vary with position in  the camera's field of view. When 
the ColorChecker is in the top-left corner of the field of view, the 
black square falls in the center of the picture, surrounded by the 
white wall on three sides. It has the largest overestimate of 
reflectance. The lower right picture places the black square in the 
corner and has the lowest overestimate. The center values fall 
between the others.

Figure 8 (top) Ratio of camera estimate/actual vs. %max 
luminance in the field of view;  (middle) The field of view 
(FOV) images of G separations captured by the camera; 
(bottom) The scenes: CC on a large white wall and window.

The fourth image in Figure 8 studies  the effect of light outside 
the camera's field of view. The color checker was placed on a 
window in front of a translucent paper diffuser. The opaque 
ColorChecker was illuminated by light reflected  off a wall behind 
the camera. The white paper was illuminated by that light plus 
transmitted light from outside the window. The white surround had 
8 times the luminance as the white in the ColorChecker.

Additional light outside the field of view (Window) showed 
an even larger departure from accurate surface reflectance 
measurements. The area around the ColorChecker was only 8 
times higher luminance than the white square. That results  in  a 
scene range of only 249:1. That is not a large value in HDR 
imaging. Nevertheless, the camera estimate of black reflectance 
was 250% the actual value.

Glare affects chromaticity
A third pair of pictures  using a Panasonic DMC-G2K camera 

showed a similar change in camera responses to scene content.
Figure 9 plots the same comparison photographs of an 

outdoor scene with a ColorChecker on white stairs; and a second 
picture in a dark room with a black background. The Window data 
from Figure 8 is repeated here for comparison.

In Figure 9  the camera-estimated black paper is only 1.5 times 
actual, when photographed in a dark room on a black background. 
When photographed outside on bright  white marble steps, the 
black estimate is  2 times actual. This is  another example of 
variable camera-reflectance estimates from different scene content.



Figure 9 (top) Ratio of camera-estimated/actual reflectance 
vs. % max luminance in the field of view; (middle) The field 
of view (FOV) images of G separation captured by the 
camera; (bottom) the scenes: daylight on white stairs, 
darkroom on black, Window from Figure 8.

Figure 10 plots the Panasonic DMC-G2K camera 
chromaticities of Figure 9 scenes for the RYGCBM ColorChecker 
squares. The linear RAW* data came from exposures using 
different spectral illuminants, so the Gray3(middle gray) digits 
were used to color balance the images. The data show that camera 
calculated chromaticities from linear RAW* camera digits vary 
with  scene content. The results show that photographs of a 
ColorChecker taken: a) on white marble stairs, and b) in a 
darkroom on black, render different camera chromaticities. Camera 
chromaticities of constant reflectances vary  with scene content. 
These departures from accurate reflectance values correspond to 
the effects of veiling glare. 

Figure 10 shows variable camera chromaticities with scene 
content: White Stairs; and Black. G3 is the chromaticity of 
middle gray. The white stairs reduces the range of camera 
chromaticities.

In human vision departures from accurate scene values in the 
retinal image are of no consequence. Human spatial image 
processing is  insensitive to such glare distortions. Human neural 
contrast mechanism tends to counteract glare. Images with the 
lowest retinal contrast have the highest apparent contrast. (McCann 
& Rizzi, 2012)

Discussion
CVCC has  the task of identifying an object's reflectance in an 

unknown illuminant. The accuracy of a CVCC algorithm is its  
ability to discriminate between an object and other similar objects. 
A frequently  used approach is to calculate the chromaticity of the 
illuminant from the array of all scene radiances. Finding the 
illuminant provides the path to finding the object's surface 
reflectance. Chromaticity has the significant  advantage that  it  is 
indifferent to the amount of illumination, as long as there is  no 
variation in its  spectra. Chromaticity  CVCC algorithms convert 
local changes in spectral illumination directly  into object's spectral 
reflectance changes. Scenes with multiple spectral  illuminants, 
such as  sunlight  and sky light, or scenes with light reflected from 
colored objects, introduce large errors in CVCC results.  

The data reported here shows that camera chromaticity 
correlates with surface reflectance in Figures  1(left) and 5. These 
experiments used uniform spatial and spectral illumination.  
These graphs restricted their data to chromaticities that were 
calculated from RGB RAW* digits that  had been verified as 
linear responses to scene radiances. Our data also shows that 
many camera characteristics can introduce nonlinear responses 
that are critical to CVCC research. They include:

• Color masking in standard images
• RAW image processing (in camera software)
• Dark value minimal pedestal
• Camera veiling glare (caused by scene content)

Accurate calculations of CVCC require camera digits with 
verified linearity. Otherwise, any or all of these nonlinearities will 
introduce error in these calculations.

Camera Glare
Sensors count photons. In theory, when we vary  the exposure 

time with constant aperture, we alter the photon count falling on 
the sensor, and the sensor responds in a proportional manner. The 
measurements in Figures 7, 8 & 9 show a different behavior. These 
plots show that the ratio of camera-estimated reflectance to actual 
reflectance (telephotomer readings) varies depending on the scene 
content. We observed this behavior for all of the different 
exposures, showing that  this effect is consistent  with camera 
veiling glare. Glare adds the same scene-dependent parasite images 
(Sowerby, 1956;  Kingslake, 1992; McCann & Rizzi, 2012) to 
every exposure. We have seen  that Canon camera's RAW* digits 
(minus pedestal) are extremely linear near its minimum value. The 
image falling on the sensor is the sum of the scene radiance image 
plus  the veiling  glare image. For each individual pixel the veiling 
glare value is a constant fraction of the scene radiance value. It 
does not matter that this fraction is  different for every pixel. Our 
measurements showed that the proportion of glare to scene 
radiance does not  change with exposure. That is  the behavior we 
observe in there measurements. That is evidence that veiling glare 
is  large enough to alter scene data needed to calculate accurate 
chromaticity values. Camera reflectance estimates show between 



10% and 20% error below middle gray (scene radiance is only  0.7 
log units below maximum scene radiance) for these camera 
configurations. Recall  that the ColorChecker in uniform 
illumination is an abnormally low-contrast scene. Nevertheless, it 
is  severely affected by glare introduced in the captured image by 
the scene content. 

The glare problem becomes acute when one considers 
chromaticity accuracy in real scenes with real illumination. The 
most difficult part  of the problem is that accuracy is a function of 
scene content, with no compensation mechanism for the variable 
size of veiling glare affecting camera estimates of scene radiances. 
The experiments in  Figures 1, 3, 6, 7, 8, and 9 used uniform 
illumination. However, real  scenes are characterized by non-
uniformities in both spatial and spectral light distributions. This 
means that the effects of veiling glare, on the estimated radiances, 
can be considerably greater in  real life scenes compared to the ones 
reported in this study. 

Veiling glare is responsive to scene radiances, not objects' 
reflectances. That means that any cause of nonuniform 
illumination will affect the veiling glare contribution to a camera 
chromaticity value. For example, a white reflectance square in a 
very deep shadow will  have a significant camera veiling glare 
component added to its scene radiance component. This  will  limit 
the dynamic range and consequently, the accurate calculation of 
camera chromaticity  values. Glare can come from any light falling 
on  the lens, whether or not the source is included in the camera 
image's  field of view (ISO 9358, 1994). Unfortunately, there are no 
meaningful assumptions we can make about the statistics  of scenes 
we could capture with our cameras, in  order to predict the 
contribution of glare. If we make any assumption about the 
distribution of light  in all scenes, we can always find a scene that is 
an exception to that rule. The camera can be aimed at scenes with 
any, and all possible statistics. 

There are viable and frequently used techniques to subsample 
the camera image to remove undesirable outlier data. These 
techniques work well in color photography for human viewing, but 
not in CVCC. The rationale for subsampling needs no more 
justification that most people will  not complain about the picture's 
image quality. However, to strictly verify a scientific principle one 
needs a precise rationale for subsampling to  eliminate the effects of 
outliers. When we demonstrate that  an algorithm works in a 
subsample of the scene, we must be careful not to assert that it 
works for the entire scene. Again, a lot  depends on the goal for 
differentiating colored surfaces. If the goal is to identify chips in 
the Munsell  Book, the accuracy of camera chromaticity must be 
very high. Our experiments show that the best  ground truth for 
evaluating CVCC algorithms is  spotmeter reflectance 
measurements.  

Multiple Exposures
Over the last 25 years  many papers have used multiple 

exposures in electronic imaging to increase the dynamic range of 
captured scene information. (Ochi  and Yamanaka, 1985;  Alston et 
al., 1987; Mann, 1993; Debevec and Malik, 1997; Reinhard et  al., 
2006) As  seen in our measurements above, accurate scene 
information from this technique is limited by veiling  glare. The 
captured range strictly depends  on scene content. Some scenes, 
such as beaches, show that the limit of accurate information is 
reached with light-gray reflectances in uniform illumination. 

The very valuable information found in multiple exposures is 
the linearity measurements described in Figure 6. By testing the 
difference of digital values between different  exposures, we can 
easily measure the range of linearity of a camera response to an 
individual scene. Again, verified linearity is essential if one uses 
chromaticity in scene analysis.

Conclusions
Computer Vision Color Constancy sometimes employs a 

pixel-based analysis of the image statistics of camera 
chromaticities. We measured the range of conditions in which 
camera digits  generated accurate chromaticities. First, we showed 
the need for using captured data before the color masking 
processes found in standard images. Second, RAW image data that 
bypassed standard camera processing, using DCRAW, or LibRAW, 
software, gives us access to linear camera data. The largest linear 
camera response we measured here was an exposure range of flux 
of 1.8 log units. This is  the range of G sensor digit between black 
(digit = 7) and white (digit = 11,384) using  a Canon 60D camera. 
Third, comparisons of camera measurements vs. spotmeter 
radiance readings show that scene-dependent veiling glare reduces 
the range of accuracy of chromaticity measurements. 
Consequently, camera estimates of constant scene reflectances vary 
with  scene content,   since veiling glare affects radiance estimates, 
that in  turn  affect chromaticity. Our study  shows that  reflectance 
chromaticity has very small limits of accuracy when measured by a 
camera. More importantly, these limits  are much smaller than the 
3.0 log unit range of luminances in many typical real-world scenes.

Computer Vision Color Constancy is best  evaluated in real 
scenes by comparing camera captured reflectance estimates with 
actual reflectance measurements as ground truth. That  way we can 
get a true evaluation of the algorithm's accuracy, taking into 
account glare and linearity issues found in cameras.
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